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ABSTRACT
In this article are presented results from analysis of daily mean surface air temperature and humidity data 
applying nonlinear techniques. The data are collected for Chennai, India during January 1988–December 
2013. The phase space, which illustrates the progress of the behavior of a nonlinear dynamical system, is 
reconstructed by Takens delay embedding theorem. The delay time and embedding dimension are estimated 
using average mutual information (AMI) and false nearest neighbor (FNN) algorithm respectively. Based 
on these embedding parameters (delay time τ and embedding dimension m) the correlation dimension 
for various embedding dimension and largest lyapunov exponent are estimated. Finally, the phase space 
reconstruction algorithm is employed to make a short-term prediction of the chaotic time series, whose 
governing equations of the system are unknown. The predicted values are in good agreement with the 
observed ones within 7 days, but they appear much less accurate beyond that limit (7 days). These results 
indicate that chaotic characteristics clearly exist in the air temperature and humidity data; techniques based 
on nonlinear dynamics can therefore be used to analyze and predict the air temperature.
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INTRODUCTION

Atmospheric processes, such as air temperature and 
humidity, are usually nonlinear and complex (Selvam, 
2012). The underlying complexity with in temperature and 
humidity makes the investigation as one of the indefinable 
tasks. The advancement in chaos theory offers new ways 
to draw the hidden information in random-like data. 
However, the methods originally branches from nonlinear 
dynamics and chaos theory, are now used to identify pure 
deterministic nonlinear mechanisms. Chaotic mechanisms 
are also used to identify deterministic elements which are 
mixed with other stochastic elements in the data. Although, 
chaotic time series illustrates the characteristic of dynamical 
systems as random, in the embedding phase space they 
represent deterministic behavior (Zhang and Man, 1998). 
Over the past two decades, distinguishing deterministic 
chaos and noise has become an important problem in many 
diverse fields, e.g., weather forecast (Lorenz, 1993), sunspot 
prediction (Park et al., 1996), hydrology (Sivakumar, 2000 
and 2004; Rodriguez et al., 1989; Elshorbagy et al., 2002), 
traffic flow (Nair et al., 2001), foreign exchange rate (Das 
and Das, 2007), economics (Chen, 1998), etc., this is due 
to the availability of numerical algorithms for quantifying 
chaos using experimental time series.

The concept Phase-space reconstruction, embedding 
of a single-dimensional time series in a multi-dimensional 
phase-space to characterize the underlying dynamics, 
could be an useful methodology for forecasting. In recent 
time Phase-space reconstruction has found its applications 
in various fields such as lake volume (Abarbanel and Lali, 

1996), rainfall (Berndtsson et al., 1994; Rodriguez et al., 
1989), rainfall-runoff (Sivakumar et al., 2001b), etc. In 
this paper, we use nonlinear time series techniques to 
analyze the temperature and humidity data of Chennai, 
India. The results indicate that chaotic characteristics 
obviously exist in the temperature and humidity data; 
a technique which is based on phase space dynamics, 
can be used to analyze and predict the temperature and 
humidity. 

Analysis of Nonlinear Time Series

Reconstruction of phase space

The fundamental idea of the phase space reconstruction 
is that, a time series contains the information about 
unobserved state variables, which can be used in the 
prediction of the present state. For a scalar time series xt, 
where t = 1, 2, 3, . . ., may be used to construct a vector 
time series that is equivalent to the original dynamics 
from a topological point of view. The phase space can 
be reconstructed using the method of delays (Cao, 1997; 
Abarbanel et al., 1990; Frede, and Mazzega, 1999; Fraser 
and Swinney1986; Takens, 1981). The state space needs to 
form a coordinate system to confine the structure of orbits 
in phase space, this can be made by using lagged variable; 
xt+t, where τ is the delay. 

	
(1)

Where τ, m is referred to as the delay time and embedding 
dimension respectively. 
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Determining Time-Delay and embedding dimension

Time–delay embedding is the best empirical method for 
analyzing a dynamical system (Packard et al., 1980). It 
has been shown that under reasonable conditions, a time 
delay embedding preserves the quantities of the dynamical 
system in which we are interested (Takens, 1981; Whitney, 
1936; Andrew and Harry 1986). 

The proper choice of the time delay τ, is needed for 
reconstructing the trajectory in phase space from the 
chaotic scalar time series data. In order to characterize 
the chaotic systems and to obtain the quantities such as 
lyapunov exponent and other generalised entropies for a 
measured scalar time series, which is generated by a chaotic 
system, an appropriate state vector needs to be constructed 
with suitable time delay τ. For an infinite noise free data 
set the value of the delay time τ is in principle almost 
arbitrary (Takens, 1981), however for finite amount of data 
the choice of τ determines the quality of reconstructed 
trajectory in phase space and thereby one obtains for the 
generalized entropies, exponents and dimensions. The 
problem of proper choice of τ has been tackled by Fraser 
and Swinney (Andrew and Harry, 1986; Liebert and 
Schuster, 1989). Mutual information is a tool to measures 
of independence between data samples, the value of τ that 
produces the first local minimum of mutual information 
be used for phase space construction (Shaw, 1985), the first 
minimum of the mutual information can be selected as 
time delay. Average mutual information (AMI) is a theoretic 
method to connect two sets of measurements with each 
other criterion. The average mutual information between 
x(t) and x(t+ τ) can be calculated by

	
(2)

I(τ) determines the average amount of information shared 
by two values in the time series. When the value of T 
increases, x(t) and x(t+τ) becomes independent and I(t) 
will tends to zero (Abarbanel and Lali, 1996).

Similarly, determining an optimum embedding is a 
significant process, the precision of τ and m is directly 
related with the accuracy of invariables of the described 
characteristics of the strange attractors in phase space 
reconstruction. Time series which is reconstructed in 
minimal embedding dimension m, and the reconstructed 
attractor is a one-to-one image of the attractor in the 
original phase space. As the embedding dimension 
increases, the attractor unfolds; the same points on the 
attractor will not cross itself. The attractor would be 
completely unfolded in dimension (Embedding Dimension), 
where number of nearest neighbours arising through 
projection is zero. If time series is reconstructed to a 

smaller embedding dimension than minimum embedding 
dimension, then the state space trajectories projection of 
the points might appear as near neighbourhoods of other 
points which they are not neighbours in actual. The benefit 
of these neighbours, among other things, is that they allow 
the information on how phase space neighbourhoods evolve 
to be used to generate equations for the precise prediction 
of the time evolution of new points on or near the attractor 
(Abarbanel et al., 1990; Whitney, 1936; Farmer and 
Sidorowich,1987). The lowest dimension, in which none of 
the orbits in the attractor overlaps, is called the embedding 
dimension of that attractor. False nearest neighbour is 
an appropriate method for estimation of the optimum 
embedding dimensions, because this algorithm eliminates 
the incorrect neighbours. The points which are close to 
each other in one dimension, due to projection the points 
will be separated in higher embedding dimensions. The 
distance between two neighbor points amplify when going 
from dimension d to d+1 and it is a criterion for casting 
the embedding errors. This criterion is called false nearest 
neighbour, and should satisfy the following equation:

	
(3)

Where t and tr are the times corresponding to neighbour 
point and the origin point, respectively. Rd is the distance 
in the phase space with embedding dimension d. Rtot is 
the tolerance threshold (Abarbanel et al., 1990).

Hurst exponent

Harold Edwin Hurst is known for introducing the Hurst 
exponent as a measure for the predictability of a time 
series (Hurst, 1951; Harris et al., 1987). Hurst exponent 
is not only used as a measure of long-term memory but 
also correlate the fractal dimension of the time series, and 
it has been used in many fields.

The Hurst exponent is determined using R/S analysis. 

	 (4a)

	 (4b)
Where H is the Hurst exponent

Hurst exponent can change between 0 and 1. The 
Hurst exponent of 0.5 shows a true random walk. A 
value between 0 and 0.5 indicates non-persistent behavior, 
meaning that the data is not random but the current trend 
is unlikely to continue. A Hurst exponent between 0.5 and 
1 proves that the data are more persistent and the current 
direction is likely to continue. Hurst exponent value is 0 
means that the time series changes direction with every 
sample. A constant time series with non-zero gradient will 
result in a Hurst value of 1 (Edman, 1996).
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Poincaré map

The Poincaré map is a tool to observe the response of a 
nonlinear system. Analyzing high dimensional dynamical 
flow of the nonlinear system in the corresponding phase 
space is an important task. Typically, rather than analyzing 
the continuous flow in the (d)th dimension phase space, we 
observe the dynamics induced by the flow on a particular 
section of the phase space called Poincaré section (Basu, 
2007). A Poincaré section is a hypersurface in the phase 
space, which is transverse to the flow of a given dynamic 
system. The intersection induces a set of points in (d−1)th 
dimension space. The projection of a Poincaré section on 
the X(T)-Y(T)  plane is referred to as the Poincaré map of 
the dynamic system, where T is driving force. For chaotic 
motion, the return points in the Poincaré map form a 
geometrically fractal structure. 

Largest Lyapunov Exponent

Lyapunov exponent is an appreciable quantitative measure 
of chaotic dynamics and in many cases it is the only 
evidence for chaos, Exponential divergence of nearby orbits 
in phase space is accepted as the hallmark of chaotic 
behaviour (Drazin, 1994; Ramasubramanian and Sriram, 
2002). A system with at least one positive lyapunov 
exponent is defined to be chaotic. The magnitude of the 
exponent confirms the time scale, beyond which the system 
dynamics become unpredictable, that can be determined 
(Shaw, 1981). Lyapunov exponents are the average 
exponential rates of divergence or convergence of nearby 
orbits in phase space. Since nearby orbits correspond to 
nearly identical states, exponential orbital divergence means 
that the separation between the two orbits in that system 
will also be a function of time, whose initial difference will 
soon behave quite differently, so predictability is rapidly 

vanished. The mean exponential rate of divergence of two 
initially close orbits was described by

	 	
(5)

This number, called the largest lyapunov exponent (λ) is 
used for distinguishing among the various types of orbits and 
provides a measure of the rate of this divergence (Froyland, 
1992), the exponents measure the rate at which system 
processes create or destroy information (Shaw, 1981). 

Chaos is basically deterministic; it is unpredictable 
beyond certain short intervals. In fact, the accurate 
prediction of a chaotic dynamical system is a function of 
the largest Lyapunov exponent (Abarbanel and Lali, 1996).

	
(6)

Study Area

Chennai is spread roughly from 12°50’ N to 13°17’ N 
latitude, and from 79°59’ E to  80°20’ E longitude. This 
area is one of the most highly populated urban sites and 
the fourth largest metropolis in India and 36th largest urban 
area in the world, encompassing a total area of roughly 
426km2 (Figure 1). It is located on the south-eastern coast 
of India in north-eastern part of Tamil Nadu on a flat 
coastal plain known as the eastern coastal plains, with 
the Bay of Bengal to its east. For most part of the year, the 
weather is hot and humid. 

Time series of daily mean temperature and humidity 
data of Chennai, were obtained from IMD. The 26-year 
period from 1988 to 2013, with 9055 data points is used in 
the study. Various researches over the past two decades have 
made a significant progress in the methods to identify chaos 
in a time series (Abarbanel and Lali, 1996; Berndtsson et 
al.,1994; Li and Liu, 2000) are used in this studies.

Figure 1. Map showing the location of study area.
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Analysis and results

The time series of the daily mean temperature and 
humidity, collected over a period of about 26 years at 
chennai, India is shown in the Figure 2 (a,b). 

Determination of reconstruction parameters

In order to reconstruct the original phase space, we need 
to calculate approximate reconstruction parameters, the 
delay time (τ) and embedding dimension (m). For both daily 

temperature and humidity time series, first minima time 
lag is calculated by AMI. The results (Figure 3) expose first 
minima at time lag 50 days and 7 days and for temperature 
and humidity time series respectively. 

Calculating the percentage of false nearest-neighbors 
for the time series is the method used for the determination 
of the sufficient embedding dimension. The method shows 
that the estimation value of embedding dimension is 20 for 
both temperature and humidity data which is illustrated 
in the Figure 4. Both AMI and embedding dimension are 
estimated using Visual Recurrence Analysis (VRA) software.

Figure 2(a, b):  Time series plot of mean temperature and humidity.

Figure 3. AMI bits Vs Time Lag for daily mean Air temperature and humidity.
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Figure 4. Embedding dimension Vs False neighbors for daily mean Air temperature and humidity.

Figure 5 (a).  Shows three- dimensional phase portraits and Poincaré map of the daily mean air temperature time series.

Figure 5 (b). Shows three- dimensional phase portraits and Poincaré map of the daily mean relative humidity time series.
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Phase Space Representation

Phase space is a representer of a dynamical system where 
each point on that phase space represents a particular 
state of the system at a particular time. Phase space 
representation is versatile tool in time series analysis. Due 
to the fact that, phase space determines all the states of a 
dynamical system, analysis of that system can be achieved 
in both identifying the system and predicting the future 
states via Phase space representation. Figure 5(a, b):  Shows 
three dimensional phase portraits of the reconstructed 
attractor for the daily mean air temperature time series 
reconstructed for τ=50 and reconstructed at τ=7 for relative 
humidity time series. Poincaré map is geometrically fractal 
structure, which confirms the chaos in the time series.    

Estimation of Hurst exponent	

Hurst exponent is derived using R/S analysis (MATLAB). 
Hurst exponent values calculated from Figure 6a and 
Figure 6b for temperature and humidity time series data 
are 0.8762 and 0.8495 respectively. The results show that 
both the time series data exhibit persistence nature. 

Forecasting daily surface air temperature by 
Phase Space Reconstruction approach

Phase-space is a useful tool for characterizing dynamical 
systems. Firstly, in 1980, Packard, Crutchfiled, Farmer and 
Shaw suggested the theory of generating a reconstruction 
space from a single time series to characterize nonlinear 
dynamical system, and the theory was completed by 
F.Takens in 1981. Reconstruction of a single dimensional 
time series in a multi-dimensional phase-space explores 
the underlying phenomena. In that embedded phase space, 
the phase space analysis can be applied, because it owns 
the geometric properties as the state space. This fact arises 
from the fact that the attractor in reconstructed phase space 
is one to one image of the attractor in state space. Takens 
phase space reconstruction is the most popular method, 
using the past history and an appropriate time delay. 

Math code for the phase-space reconstruction (PSR) 
approach is written, and forecasting is carried out in 
MATLAB. 

The prediction for the daily mean temperature time 
series in Chennai is shown in Figure 7. The difference 
between the actual value and predicted data is negligible, 

Figure 6(a). Hurst exponent plot for temperature data. Figure 6(b). Hurst exponent plot for humidity data.

 Table 1. complete analysis of time series data.

Period Data type
Time delay 

(τ)
Embedding 

Dimension (m)
Hurst 

exponent (H)
Lyapunov 

exponent (λ)
Correlation coefficient 
between temperature 
and humidity data

1988-1993 Temperature 13 17 0.9826 0.084 -0.54

Humidity 8 17 0.8953 0.528

1994-1999 Temperature 13 17 0.9920 0.185 -0.65

Humidity 11 17 0.9431 0.485

2000-2005 Temperature 7 20 0.9775 0.266 -0.70

Humidity 7 18 0.9617 0.335

2007-2013 Temperature 16 20 0.9741 0.383 -0.65

Humidity 10 19 0.9699 0.358
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for 7 days, and it doesn’t hold well beyond that. In fact, 
the largest Lyapunov exponent, from Eq. (5), suggests that 
the maximum window for accurate predictions of daily 
mean temperature data is about 2-3 days. The sensitivity 
to initial condition limits the predictive ability of a chaotic 
dynamical system. As Sugihara suggested, it is expected 
that chaos decreases the correlation between observed and 
predicted values as prediction time stretches (Sugihara and 
May, 1990). Also, the prediction results firmly develop the 
fact that information is contained in the data, so it is very 
effective for short term predictions only.

CONCLUSION

In this paper an attempt was made to study on the probable 
use of the concept of Phase-space reconstruction for 
understanding nonlinear dynamics behavior and to predict 
meteorological parameters like Air temperature and humidity 
data. Series of techniques were used to investigate chaotic 
behaviors in the temperature and humidity time series data. 
We have analyzed the time series observed over 26 years 
(January 1988 – December 2013) in Chennai, using Phase 
space reconstruction techniques. The results have shown 
that chaotic features evidently exist in the temperature and 
humidity data from the positive largest Lyapunov exponent 
and from the Poincaré map. The Largest Lyapunov tells 
us the maximum length of an accurate prediction is 3 
days. These techniques can be further applied to other 
meteorological chaotic time series data.     
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