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ABSTRACT
Singular Spectrum Analysis (SSA) is a popular time series analysis tool. Numerous studies have proven 
its efficacy in processing the data contaminated with various kinds of noises. As the geophysical field 
observations are highly non-linear and contains random as well as coherent noises, the analysis of data using 
SSA provides the significant information in terms of Eigen properties of the system under investigation. 
Unlike standard Fourier and wavelet methods, the basis functions of the SSA are completely data adaptive 
(Eigenvectors of trajectory matrix). Such data adaptive basis functions enable the self similarity of time 
series in data gap filling and noise suppression. Here we made an effort to briefly discuss the principal 
component analysis,frequency filtering, noise suppression and data gap filling of SSA and their application 
in time domain geophysical data processing.

INTRODUCTION

Geophysical field data symbolizes an amalgamated response 
of physically interpretable signal of concern and certain 
amount of noise (unwanted signal).Researchers have 
developed several filtering techniques to separate signal 
from the field data with random noise as it appears as a 
flat spectrum in frequency domain (Yilmaz, 2001; Canales, 
1984; Abma and Claerbout, 1995; Karsli et al 2006).The 
stratification of different earth layers has been occurred 
at different times in the geological history. Hence the 
geophysical depth series always stands as a synonym for the 
geological time series. Thus the analysis of the geophysical 
depth series using time series analysis tools enable the 
detection of basic properties of the underlying system that 
has engendered the depth series. 

The singular spectral analysis (SSA) is one of the 
popular and powerful time series analysis tools, which 
has been invariably used to identify the unknown or 
partially known dynamics of the underlying systems 
(Vautard and Ghil, 1989; Vautard et al, 1992). Unlike 
the classical spectral methods, SSA signal decomposition 
and reconstruction employs completely data-adaptive 
basis functions( i.e., the Eigen modes of the trajectory 
matrix) , rather than the fixed sines, cosines and mother 
wavelets used in the other methods (Ghiland Taricco, 
1997; Ghilet al, 2002).The geophysical data are often 
non linear in nature and also contains unavoidable data 
gaps. So, the analysis of such signals with discontinuities 
via classical methods invoking fixed basis functions (ex. 
Fourier, Wavelet etc.,)may not be more appropriate(Dimri, 
1992; Bansal and Dimri, 2001, 2005; Rajesh et al., 2014). 
Such abrupt jumps generally symbolize the boxcar or 
seesaw-shapes. The precise reconstruction of such boxcar 
or seesaw-shapes could be possible using a single pair of 

eigentriples in SSA rather than involving many harmonics 
in conventional methods (Ghil and Taricco, 1997). Hence, 
it is creditable analysing geophysical data in terms of the 
Eigen properties of independent principal process using 
SSA. Even though the applicability of SSA extended from 
astronomical data processing to stock market prediction, in 
the present communication we restrict our self to discuss 
its applicability (like principal component analysis, data gap 
filling, and Frequency filtering and S/N ratio enhancement 
by noise reduction) to geophysical data.

METHODOLOGY

The brief mathematical description of the SSA methodology 
is given bellow following Golyandina et al (2001).

Embedding:

We begin with embedding the trajectory matrix (T)of size 
L× (N-L+1) from time series Y(t) ={y

1,y
2, …..y

N} using an 
appropriate window length L given by

Here Yi={y
i,y

i+1, .... 
y
i+L} T indicates the vector of length L 

where K=N-L+1.
The window length is the crucial parameter, which 

dictates the separability of different Eigen modes. The 
classical limit for window length is 2≤L≤ N/2 (Golyandina 
et al., 2001). If the data contains low frequency component 
of frequency fmin, then we can choose 1/ fmin  as the window 
length. Alternatively, window length can also be computed 
from the lagged auto correlation of the data. The half of 
the difference between the lags corresponding to any two 
successive points of same phase on the auto correlation 
plot can be chosen as the Window length.
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Singular Value Decomposition (SVD):

The trajectory matrix was decomposed using SVD to 
obtain the eigenvectors and eigenvalues. The periodicity 
and the contribution of the principal components can be 
seen from the eigenvectors and eigenvalues respectively. 
The decomposition of T is given by 

Where, λi is the ith eigenvalue corresponding to the ith 

eigenvector Ui of TTT and d is the number of nonzero Eigen 
values. The triple (√λi,Ui,Vi) is called the ith eigen triplet. 
The SVD is a key process of SSA, which helps to identify 
the periodicities of different Eigen/ principal modes along 
with their significance and contribution. In general, the 
eigen components/ principal components of low variance 
present in the tail of the eigen spectrum corresponds to 
the unwanted signal (noise), (Trickett, 2003). Hence it is 
possible to identify the eigen components correspond to 
noise.

Grouping and Reconstruction: 

In the next step, the eigen triplets obtained in the above 
SVD process are grouped by  the periodicity of Eigenvectors 
and by dropping the insignificant eigen triplets corresponds 
to low eigenvalues as they resemble the unwanted noise. 
For example, If there exist two such groups (satisfying the 
requirement of periodicity and eigen values) given byG1= 
{ T1, T2, T4, T5}, G2= {T3, T7.} among d triplets, then   
T=G1+G2+Gr whereGr = {T8, T9, ……….Td}is the residual 
signal representing the noise. The reconstructed trajectory 
matrix (Tr) could be computed from the identified groups 
G1 and G2 as follows. 

For different objectives the grouping scheme will 
be different. In frequency filtering the triplets with the 
eigenvector periodicities satisfying the cut off frequency 
constraints will be grouped to reconstruct the trajectory 
matrix. For principal component analysis we will group 
the individual or the pairs of (when they are of the same 
periodicity) eigentriples to reconstruct the trajectory matrix. 
For denosing we consider the eigentriples of significant 
eigenvalues for reconstruction.

Diagonal averaging:

Finally, we deduce the reconstructed time series of length N 
by diagonal averaging of Tr. Let us denote the reconstructed 
series by Yr= {g1, g2, gk, ... ... ... gN}. The elements of Yrcan 
be computed as follows.

We define L*= min (L,K), K*=max(L,K) and let y*
ij=yij 

if L<K and y*
ij=yji otherwise

And g1 = y(1,1)

PRINCIPAL COMPONENTS AND THEIR 
SEPARATION

The principal component analysis is the basic and 
important utility of the SSA technique to reveal the 
dynamical components of the time series data for physical 
interpretation and prediction (Ghil et al., 2003; Serita, 
2005; Tiwari and Rajesh, 2014, Rajesh and Tiwari, 
2014, Tiwari et at., 2014). The identification is possible 
through Eigen analysis of trajectory matrix. As stated in 
methodology, the accuracy of the results depends on the 
selection of proper window length. The smaller window 
length than the optimal window length leads to the 
poorly resolved singular spectrum. This problem can be 
resolved by choosing the proper window length using 
above mentioned lagged auto correlation method. Finally, 
the separability among the  principal components can be 
computed using the formula of Weighted correlation (Wc 
to avoid artifacts (Ghiland Taricco,1997). 

Where  and  
and L is greater than or equals to N/2.The components are 
said to be well resolved if the Wc is nearer to zero.

The individual principal components can be 
reconstructed from the corresponding eigentriplet. An 
example of principal component analysis of Global, Southern 
and Northern hemispheric Sea Surface Temperature (SST) 
annual average data from 1850 to 2012 is presented in the 
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Fig.1 (Data source: www.metoffice.gov.uk/hadobs.). The raw 
data singular spectrum, , SSA reconstructed trend (first 
principal components) and second principal components 
of Global, Southern and Northern hemispheres using 
window length 30are shown in Fig.1a, Fig.1b and Fig.1c 
respectively. The mismatch between the nonlinear trend as 
well as the second eigen mode of northern and southern 
hemispheric SST shown in the Fig.1 apparently evident for 
the hemispheric asymmetry reported by other researchers 
(Stouffer et al, 1989; Goosse et al., 2004; Friedmann et al., 
2013; Neukom et al., 2014). 

FREQUENCY FILTERING

Several researchers have demonstrated the time 
domain frequency filtering using SSA (Harris and Yan, 
2010;Golyandina and Zhigljavsky, 2013; Rajesh et al, 
2014). Accordingly, we can calculate the periodicity 
from the eigenvectors obtained in the SVD process for 
grouping and reconstruction stages to perform filtering 
operation.  If we want to perform low pass filtering with a 
cut off frequency fLC , we have to ignore the Eigen triplets 
corresponds to eigenvectors with periodicity less than 1/fLC. 

Figure 1: Principal component analysis of Global, Northern and Southern hemispheric SST data :(a) SST annual average data 
sets b) Singular spectrum using window length 30 and c) Non linear trend and 2nd principal component of global, northern and 
southern hemispheres.

Figure 2. Eigen spectrum/ Singular spectrum of the reflection trace data.
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For high pass filtering with a cut off frequency fHC we have 
will consider the eigentriplets corresponds to eigenvectors 
with periodicity greater than 1/fHC. In band pass case we 
will select the eigentriplet having the eigenvector periodicity 
between 1/fLC and 1/fHC. Here fLC, fHC are the low and high 
frequency cut off values of the pass band.

APPLICATION OF SSA FILTERING ON SEISMIC 
TRACE

The frequency filtering using SSA is demonstrated here 
by applying the method on single seismic trace containing 

8000 samples with 0.25mS. Figure 2 and Figure 3 
respectively shows the Eigen values percentages (Singular 
spectrum) and first 30 eigenvectors (EVs) of the data. As 
mentioned above, we will calculate the periodicity of EVs 
to filter the data.

Figure 4 shows the original and reconstructed traces 
using first 30 Eigen triplets as the rest are of the frequency 
(1/period of Eigenvector) greater than 135Hz (fLC) which is 
the required upper frequency limit of low pass filter. The 
power spectral density of filtered data shown in the Fig.4 
apparently indicates that the spectral components with 
frequency greater than 135 Hz are suppressed in the SSA 

Figure 3: First 30 Eigenvectors of seismic trace used to identify the periodicities in filtering operation. 

Figure 4: Original seismic trace, filtered trace using SSA low pass filtering and their respective power spectral densities.
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Low pass filtering operation.
Finally the original seismic trace, band pass filtered 

data reconstructed using Eigen triplet group G(6,9,10 
and 13 to 20) along with the respective spectral densities 
are shown in Fig.5. The periodicities observed from the 
eigenvectors in above triplet group are within the pass band 
limits (1/30, 1/135).The operation of band pass filtering 
includes the low pass and high pass filtering. Hence, from 
the above bandpass filtering one can understand the SSA 
high pass filtering operation. 

NOISE SUPPRESSION AND DATA GAP FILLING 

It is simple to define noise as an unwanted signal, but is 
difficult to hunt for such unwanted signal amalgamated with 
the data.In attempt to suppress the random noise,several 
SSA based techniques have been developed by researchers 
(Rajesh et al., 2014; Rajesh et al., 2012; Oropeza and 
Sacchi, 2011; Sacchi, 2009;Tricket, 2003; Allen and Smith, 
1997; Vatuard et al., 1992). According toTricket (2003), 
the components with maximum variance in the eigen 
spectrum represents the signal whereas the incoherent 
energy mapped on to the rest. Even though the insignificant 
coherent noise present within the data, it can be clearly 
identified in the Eigen spectrum with low eigenvalues 
in the tail of the spectrum. The random noise is more 
clearly visible with randomly fluctuating, structure less 
eigenvectors. Thus the eigen/singular value analysis of SSA 
enables the identification of such noises present in the data. 
Final, signal reconstruction by plummeting those noise 
components allow the suppression of noise. As the noise 
and data gaps increases the rank of the trajectory matrix, 

the denoising is a kind of rank reduction in the SSA based 
denoising algorithms.

In the first example of the noise suppression, we have 
generated a synthetic profiling data, to which we have added 
30% complex noise generated using the following equation 
(Rajesh et al., 2014, 2012) (Fig.6). 

	 xn+1 = m.xn.(1-xn) ....................... (6)

Where m is chosen as 3.7 (0≤m≤4) and x1 = 0.1
The smooth anomaly observed in the pure data was 

clearly perturbed by the complex noise. One can see that 
the SSA de-noised output reconstructed from the first 3 
eigen triplets replicates the smooth anomaly present in 
pure data (Fig.6). 

Finally, we have provided a comparison of Space Lagged 
SSA (SLSSA) (Rajesh et al., 2012) denoising with wavelet 
three step decomposition of the seismic signals. The 
synthetic data generated using Ricker wavelet convolution 
with model reflectivity series was contaminated with 30% 
complex noise generated using equation (6). The pure 
synthetic data (Fig.7a), noisy data (Fig.7b), SLSSA (Fig.7c) 
and Wavelet de-noised outputs (Fig.7d) are shown in Fig.7. 
One can apparently see that the noise suppression is good 
in the SLSSA output compared to Wavelet denoising. Thus 
it is clear that the singular spectral methods alleviates 
suppresses the complex noise also. 

In general, the signal of unwanted frequency  present 
in the data could also be referred as noise.  For example, in 
the case of seismic reflection data, we have considered the 
35 to 135 Hz frequency components as signal and the rest 
as noise. However, it can also be noticed from the Figs 4, 5, 
the SSA is capable of separating the noise from the signal 

Figure 5: Original seismic trace, SSA band pass filtered trace along with the respective power spectrum. 
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using the frequency characteristics of signal and noise. In 
the low pass filtering operation we have suppressed the 
high frequency noise. Similarly, in the band pass filtering 
we have suppressed the low frequency noise (ground roll 
and other) along with high frequency noise. 

Data gap filling is another unique feature of SSA 
(Kondrashov, et al, 2010; Kondrashov and Ghil, 2006; 
Schoellhamer, 2001). The gaps in the geophysical data 
are obvious due to many unavoidable reasons like sudden 
changes in the topography, malfunctioning of instruments 
etc. For precise data interpretation, we require to fill the 
gaps in the processing.  The SSA signal reconstruction 
involves the eigen properties of the time series, more 
precisely the eigenvectors. Hence the data gap filling in 
SSA methodology is purely eigen analysis based recovery. 
The pre normalization and post multiplication  by division 

and multiplication of the data by the maximum is a kind 
of small matrix completion process in the methodology. So 
clearly it is a true preservation of eigen process and different 
from interpolation technique. Thus the validity of filled 
data is more reliable compared to averaging, interpolation 
techniques. Figure 8 illustrates the data gap filling efficacy 
of SSA using a simple smoothly varying synthetic signal. 
Top panel image of Fig.8 is the original data and in the 
middle panel data we have created the gaps (DG1, DG2 and 
DG3) by setting them to zero. The last panel of Fig.8 shows 
the SSA reconstructed data of middle panel data.   Even 
though SSA can be used for data gap filling, one should 
keep in mind the data gap must be always smaller than 
that of window length. Otherwise the gaps are considered 
as features of data leading to wrong reconstruction. 

In another example of data gap filling, we have 

Figure 6: Pure synthetic data representing a smooth anomaly (Solid line with marker), synthetic data with 30% complex noise 
(dashed line) and its SSA reconstructed denoised output (solid line).

Figure 7: An example of data denoising (a) Pure synthetic data (b) Synthetic data with 30% complex noise (c) Space Lagged SSA 
denoised output of the noisy data (d) Wavelet denoised output of the noisy data.
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Figure 8: Example illustrating data gap filling efficacy of SSA.

Figure 9: An example of Data gap filling: a) Original MEI bimonthly data b) MEI data with artificial data gaps c) SSA data gap 
filling output of the MEI data with data gaps.

generated artificial data gaps (DG1 to DG5) in the 
bimonthly Multi variateENSO Index (MEI) data set 
downloaded from NOAA website (Wolter, 1987; Wolter 
and Timlin, 1993)for the period Dec1949/Jan1950, to July 
2013/Aug 2013 as shown in the dashed rectangles in the 
Fig.9. The original MEI data, MEI data with artificial data 
gaps and data gapfilling using SSA are shown in Fig.9a, 
9b and 9c respectively. One can apparently see that the 
reconstructed data shown in Fig.9c at artificial data gaps 

generated in the MEI data (DG1 to DG5 in Fig.9b) are 
matching with the original data (Fig.9a). 

Finally, we have compared the SSA data gap filling 
with conventional interpolation methods like Nearest 
Neighbour Interpolation (NNI), Piece wise Cubic Hermite 
Interpolation (PCHI) and Spline interpolation methods 
using the MEI data with artificial data gaps. Figures 10a 
and 10b respectively represents original MEI data, MEI data 
with artificial data gaps. The data recovered using NNI, 
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PCHI and Spline methods are shown in Fig.10c, Fig.10d 
and Fig.10e respectively. It can be noticed from the dashed 
rectangular regions of the Fig.10, the interpolation methods 
failed to recover the data. Hence the data gap filling using 
SSA is more robust than that of the conventional methods.  

CONCLUSION 

In conclusion, the SSA is a good choice for analyzing 
geophysical data for principal component identification, 
frequency filtering, noise suppression and data gap filling. 
The usage of data adaptive basis functions enables the self-
similarity, a characteristic feature of many geophysical data 
sets, in de noising and data gap filling. We have explained 
principal component analysis by applying the underlying 
method on SST hemispheric data sets. The mismatch 
between the first two eigen modes/ principal components 
demonstrates the inter hemispheric climatic disparity 
reported by several researchers. We have demonstrated 
the SSA frequency filtering (low pass, high pass and band 
pass filtering) using seismic reflection data. The SSA 
stands as the robust de-noising technique even for highly 
complex seismic data as it involves the eigen analysis for 
noise identification. Finally, we have shown that the SSA 
data gap filling efficiency in comparison with conventional 
interpolation techniques. 
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