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ABSTRACT
Design of retaining wall needs the complete knowledge of earth pressures for both active and passive
conditions. Under earthquake condition, the design requires special attention to reduce the
devastating effect of this natural hazard. But under seismic condition, the available literatures mostly
give the pseudo-static analytical value of the earth pressures as an approximate solution to the
real dynamic nature of the complex problem. In the present work, a recently developed pseudo-
dynamic method, which incorporates time dependent effect of applied earthquake load and effect
of shear and primary waves, is applied to study effect of variation of parameters like soil friction
angle, wall friction angle, time period of earthquake ground motion, seismic shear and primary
wave velocities of backfill soil and seismic peak horizontal and vertical ground accelerations on the
seismic earth pressures. Again a complete analysis between these two design methodologies shows
that the time dependent non-linear behaviour of the pressure distribution obtained in the pseudo-
dynamic method results more realistic design values of earth pressures under earthquake condition.

INTRODUCTION

Estimation of the seismic earth pressure is an
important topic of research for the safe design of
retaining wall in the seismic zone. It is a common
practice to consider the seismic accelerations in both
horizontal and vertical directions in terms of
equivalent static forces, called pseudo-static
accelerations. Using the pseudo-static approach, several
researchers have developed different methods to
determine the seismic earth pressure on a rigid
retaining wall due to earthquake loading starting from
the pioneering works by Okabe (1926) and Mononobe
& Matsuo (1929), commonly known as Mononobe-
Okabe method (see Kramer, 1996) based on the
pseudo-static approach, which gives the linear earth
pressure distribution in a very approximate way
irrespective of static and seismic conditions. Kumar
(2001) had determined the seismic passive earth
pressure coefficients for sands using limit equilibrium
method. Dewaikar & Halkude (2002) have proposed a
pseudo- static numerical analysis of seismic active and
passive thrust on retaining wall, using Kotter ’s
equation. Kumar & Chitikela (2002) obtained the
seismic passive earth pressure coefficients using
method of characteristics. Madhav & Kameswara Rao
(1969); Choudhury & Nimbalkar (2002); Choudhury
(2004); Subba Rao & Choudhury (2005) have adopted
limit equilibrium for determining individually the

seismic passive earth pressure coefficients
corresponding to unit weight, surcharge and cohesion
components. Choudhury & Singh (2006) have
determined active earth pressure coefficients under
static and seismic conditions using modified Culmann
method. However, all the above methods are based on
pseudo-static method of analysis, which does not
consider the time effect of the applied earthquake load
and the effect of shear and primary waves passing
through the soil media. To overcome these drawbacks,
the analytical method based on pseudo-dynamic
approach as given by Steedman & Zeng (1990) and
modified by Choudhury & Nimbalkar (2005, 2006) is
used for the present analysis for calculation of seismic
passive and active earth pressure.

Steedman & Zeng (1990) considered in their
analysis a vertical rigid retaining wall supporting a
particular value of soil friction angle (φ) and a
particular value of seismic horizontal acceleration (k

h
g,

where g is the acceleration due to gravity) only. Again
they have considered effect of horizontal seismic
acceleration due to vertically propagating shear waves
through the backfill behind retaining wall. In an
improvement over this method, Choudhury &
Nimbalkar (2006) have incorporated effect of vertical
seismic acceleration due to vertically propagating
primary waves through the backfill soil. Again, they
have studied the effect of various parameters such as
wall friction angle (δ), soil friction angle (φ), shear
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wave velocity (V
s
), primary wave velocity (V

p
), both the

horizontal and vertical seismic accelerations (k
h
g and

k
v
g) on the seismic active earth pressure behind a rigid

retaining wall by the pseudo-dynamic. Choudhury &
Nimbalkar (2005) have extended this modified work
for estimation of seismic passive earth pressure.

In pseudo-dynamic method, vertically propagating
shear and primary waves through the backfill generate
vibrations in horizontal and vertical directions
respectively. These horizontal and vertical vibrations
correspond to horizontal and vertical time dependent
seismic inertia forces respectively. Time dependent
nature of these seismic inertia forces is considered in
the present analysis.

In this paper, a complete analytical study describes
the behaviour of seismic earth pressure distribution
for different soil friction angle, wall friction angle, shear
wave velocity, primary wave velocity and horizontal
and vertical seismic accelerations for both active and
passive conditions of earth pressures.

MATHEMATICAL MODEL

The pseudo-dynamic method of analysis considers
finite shear and constrained modulus of the backfill
soil leading to finite shear and primary wave velocity.
A fixed base vertical cantilever rigid retaining wall of
height H, supporting a cohesionless backfill material
with horizontal ground is considered in the analysis
as shown in Figs. 1 and 2. The shear wave velocity,
V

s
 and primary wave velocity, V

p
 are assumed to act

within the soil media due to earthquake loading. The
period of lateral shaking, T = 2π/ω, where ω is the
angular frequency is considered in the analysis.

Let the base of the wall is subjected to harmonic
horizontal seismic acceleration, a

h
 (= k

h
g) and

harmonic vertical seismic acceleration a
v
 (= k

v
g), the

accelerations at any depth z and time t, below the top
of the wall can be expressed as follows,

( ,  t)  a sin
h

H z
a z t
h V

s
ω
⎡ ⎤−
⎢ ⎥= −
⎢ ⎥⎣ ⎦

(1)

( ,  t) a sin
v

H z
a z t

v V
p

ω
⎡ ⎤−⎢ ⎥= −
⎢ ⎥
⎣ ⎦

(2)

The horizontal and vertical seismic accelerations
acting on the soil wedge as described in Eqs. (1) and
(2) are not constants but dependent on effect of both,
time and phase difference in shear and primary waves
propagating vertically through the backfill as proposed
in the pseudo-dynamic method of analysis.

Whereas in pseudo-static method, horizontal and
vertical accelerations are considered constant acting
on the soil wedge with the neglect of time effect as
shown below,

h k .a g
h

= (3)

(4)

In the pseudo-dynamic method, as a special case,
if the soil wedge is assumed to behave as rigid wedge
having infinite shear and primary waves, then the
pseudo-dynamic method of analysis reduces to pseudo-
static method of analysis as shown below.
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Figure 1.  Model retaining wall considered for
computation of pseudo-dynamic active earth pressure
(Choudhury & Nimbalkar 2006).

Figure 2. Model retaining wall considered for
computation of pseudo-dynamic passive earth pressure
(Choudhury & Nimbalkar 2005).
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where, Q
h
 and Q

v
 are horizontal and vertical seismic

inertia forces respectively.

SEISMIC ACTIVE EARTH PRESSURE

Fig. 1 shows the active state of earth pressure acting
on the rigid retaining wall. A planar failure surface BC
at an inclination of a

a
 with respect to horizontal is

considered in the analysis. In Fig. 1, W
a
 is the weight

of the failure wedge, Q
ha

 and Q
va
 are the horizontal

and vertical seismic inertia force components, F is the
soil reaction acting at an angle of φ (soil friction angle)
to the normal to the inclined failure wedge, P

ae
 is the

total active thrust acting at height h
a
 from the base

of the wall at an inclination of δ (wall friction angle)
to the normal to the wall.

The mass of a thin element of wedge at depth z
is

dz
zH

zm
a

a α
γ

tang
  )(

−=         (7)

where, γ is the unit weight of the backfill.
The weight of the whole wedge is,

21

2 tana
a

H
W

γ
α

=        (8)

The total horizontal inertia force acting on the wall
can be expressed as

[ ]
H

a h 2
0

  
( )  m (z).a (z, t)dz 2 Hcos (sin sin )  

4 tan
h

ha
a

a
Q t t

g
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Again total vertical inertia force acting on the wall
can be expressed as

[ ]
H

a v 2
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4 tan
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Where, λ = TV
s
 is the wavelength of the vertically

propagating shear wave and η = TV
p
, is the

wavelength of the vertically propagating primary wave.
And ζ = t – H/V

s
 and ψ = t – H/V

p
. As the horizontal

acceleration is acting from left to right and vice-versa
and the vertical acceleration is acting from top to
bottom and vice-versa, only the critical directions of
Q

hs
(t) and Q

vs
(t) are considered to result the maximum

seismic active earth pressure.
The total (static + seismic) active thrust, P

ae
 can

be obtained by resolving the forces on the wedge and
considering the equilibrium of the forces and hence
P

ae
 can be expressed as follows,

sin( ) cos( ) sin( )

cos( )
a a ha a va a

ae
a

W Q Q
P

α φ α φ α φ
δ φ α

− + − + −
=

+ − (11)

where, W
a
 = Weight of the failure wedge in active case

α
a
 = Angle of inclination of the failure surface with

the horizontal in active case
Q

ha
 = horizontal inertia force due to seismic

accelerations respectively in active case
Q

va
 = vertical inertia force due to seismic

accelerations respectively in active case
P

ae
 is maximized with respect to trial inclination

angle of failure surface, α
a
 and then the seismic active

earth pressure distribution, p
ae
 can be obtained by

differentiating P
ae
 with respect to depth, z and can be

expressed as follows,
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SEISMIC PASSIVE EARTH PRESSURE

Fig.2 shows the passive state of earth pressure/
resistance on the rigid retaining wall. Again, a planar
failure surface BC¢ at an inclination of α

p
 with respect

to horizontal is considered in the analysis. In Fig. 2,
W

p
 is the weight of the failure wedge, Q

hp
 and Q

vp
 are

the horizontal and vertical seismic inertia force
components, F is the soil reaction acting at an angle
of φ (soil friction angle) to the normal to the inclined
failure wedge, P

pe
 is the total passive resistance acting

at height h
p
 from the base of the wall at an inclination

of δ (wall friction angle) to the normal to the wall.
For the thin element of thickness dz at depth z as

shown in Fig. 2, mass is given by,
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zH
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p

p α
γ
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The weight of the whole wedge is,
21

2 tanp
p

H
W

γ
α

= (14)

The total horizontal inertia force acting on the wall
can be expressed as
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Again total vertical inertia force acting on the wall
can be expressed as
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H
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v
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p

a
Q t t

g

η γ π ωψ λ ωψ ω
π α

= = + −∫ (16)

As the horizontal acceleration is acting from left
to right and vice-versa and the vertical acceleration is
acting from top to bottom and vice-versa, only the
critical directions of Q

hs
(t) and Q

vs
(t) are considered

to result the minimum seismic passive earth pressure.
The total (static + seismic) passive resistance, P

pe
 can

be obtained by resolving the forces on the wedge and
considering the equilibrium of the forces and hence
P

pe
 can be expressed as follows,
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where, W
p
 = Weight of the failure wedge in passive

case
α

p
 = Angle of inclination of the failure surface with

the horizontal in passive case
Q

hp
 = horizontal inertia force due to seismic

accelerations respectively in passive case
Q

vp
 = vertical inertia force due to seismic

accelerations respectively in passive case
P

pe
 is minimized with respect to trial inclination

angle of failure surface, a
p
 and then the seismic passive

earth pressure distribution, p
pe

 can be obtained by
differentiating P

pe
 with respect to depth, z and can be

expressed as follows,
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RESULTS AND DISCUSSION

Results are presented in graphical form for normalized
seismic active and passive earth pressures along the
normalized depth of the wall (z/H). Variations of
parameters considered are as follows: φ = 250, 350; δ/φ
= 0.0, 0.5; k

h
 = 0.0, 0.1, 0.2, 0.3; k

v
 = 0.0k

h
 and 0.5k

h.

SEISMIC ACTIVE EARTH PRESSURE

Fig. 3 shows the normalized active earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ under static
condition (i.e. k

h
 = k

v
 = 0). It is clear that under

static condition, the active earth pressure distribution
is exactly linear as expected (see Kramer 1996).

Results of the normalized seismic active earth
pressure distribution with depth for different values
of soil friction angle, φ and wall friction angle, δ under
seismic condition of k

h
 = 0.2 and k

v
 = 0, H/λ = 0.3,

H/η = 0.16 are shown in Fig. 4. Again in Fig. 5, the
results are given for k

h
 = 0.2, k

v
 = 0.1, H/λ = 0.3, H/

η = 0.16. All these results show the non-linear active
earth pressure distribution under seismic conditions.

Comparing Figs.3 and 4, it is seen that, as k
h

increases, seismic active earth pressure also increases,
for example, with δ = 0.5φ and φ = 350, as k

h
 increases

from 0.0 to 0.2, keeping all other parameters same,
p

ae
 increases maximum at the base of the wall by

31.12%. Again from Figs.4 and 5, it is seen that as k
v

increases, seismic active earth pressure also increases,
for example, with δ = 0.5φ and φ = 350, as k

v
 increases

from 0.0 to 0.5k
h
, keeping all other parameters same,

p
ae

 increases maximum at the base of the wall by
35.64%. Also it is evident from Figs. 4 and 5 that, the

Deepankar Choudhury, Sanjay S. Nimbalkar and J.N.Mandal

Figure 3. Normalized static active earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ with k

h
 =

0.0, k
v
 = 0.0.

Figure 4. Normalized seismic active earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ with k

h
 =

0.2, k
v
 = 0.0, H/λ = 0.3, H/η = 0.16.

Figure 5. Normalized seismic active earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ with φ =
350, k

h
 = 0.2, k

v
 = 0.1, H/λ = 0.3, H/η = 0.16.
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seismic active earth pressure show significant decrease
with increase in soil internal friction angle f and that
the seismic active earth pressure show marginal
decrease with increase in wall friction angle d. For
example, with δ = 0.5φ, k

h
 = 0.2, k

v
 = 0.5k

h
, as φ

increases from 250 to 350, p
ae
 decreases maximum at

the base of the wall by 41.76% and with φ=350, k
h
 =

0.2, k
v
 = 0.5k

h
, as δ increases from 0 to 0.5φ, p

ae

shows marginal decrease of about 5.73% at the base
of the wall.

Under static and seismic conditions the active
earth pressure reduces with increase in both soil
friction angle, φ and wall friction angle, δ. And the
effect of wall friction angle is less significant than that
of soil friction angle. Degree of non-linearity of the
curves also increases with the seismic effect leading
to the rise of the point of application of total seismic
active thrust (h

a
) from the static value of 1/3rd from

the base of the wall, which is commonly used in the
design of retaining wall.

SEISMIC PASSIVE EARTH PRESSURE

Fig. 6 shows the normalized passive earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ under static
condition (i.e. k

h
 = k

v
 = 0). It is clear that the passive

earth pressure distribution is exactly linear as expected
in static case.

Results of the normalized seismic passive earth
pressure distribution with depth for different values
of soil friction angle, φ and wall friction angle, δ under
seismic condition of k

h
 = 0.2 and k

v
 = 0, H/λ = 0.3,

H/η = 0.16 are shown in Fig. 7. Again in Fig. 8, the
results are given for k

h
 = 0.2 and k

v
 = 0.1, H/λ = 0.3,

H/η = 0.16. All these results show the non-linear
passive earth pressure distribution under seismic
conditions.

Comparing Figs. 6 and 7, it is seen that as k
h

increases, seismic passive earth pressure decreases, for
example, with δ = 0.5φ and φ = 350, as k

h
 increases

from 0.0 to 0.2, keeping all other parameters same,
p

pe
 decreases maximum at the base of the wall by 10

%. Again from Figs. 7 and 8 it is seen that as k
v

increases, seismic passive earth pressure also
decreases, for example, with δ = 0.5φ, as k

v
 increases

from 0.0 to 0.5k
h
, keeping all other parameters same,

p
pe

 decreases maximum at the base of the wall by 5.75
%. Also it is evident from Figs. 7 and 8 that, the
seismic passive earth pressure show significant
increase with increase in both, soil internal friction
angle f and wall friction angle d. For example, with δ
= 0.5φ, k

h
 = 0.2, k

v
 = 0.5k

h
, as f increases from 250

to 350, p
pe

 increases maximum at the base of the wall
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Figure 6. Normalized static passive earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ with k

h
 =

0.0, k
v
 = 0.0.

Figure 7. Normalized seismic passive earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ with k

h
 =

0.2, k
v
 = 0.0, H/λ = 0.3, H/η = 0.16.

Figure 8. Normalized seismic passive earth pressure
distribution with depth for different values of soil
friction angle, φ and wall friction angle, δ with k

h
 =

0.2, k
v
 = 0.1, H/λ = 0.3, H/η = 0.16.
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by 50.95% and with φ =350, k
h
 = 0.2, k

v
 = 0.5k

h
, as

δ increases from 0 to 0.5φ, p
pe

 increases maximum at
the base of the wall by 48.17%.

Under static and seismic conditions the passive
earth pressure increases with increase in both soil
friction angle, φ and wall friction angle, δ. And as
compared to seismic active case, the effect of wall
friction angle is more pronounced for the seismic
passive condition. Degree of non-linearity of the curves
also increases with the seismic effect leading to the
reduction in height of the point of application of total
seismic passive resistance (h

p
) from the static value

of 1/3rd from the base of the wall.

COMPARISON OF RESULTS

Fig. 9 shows the comparison of seismic active earth
pressure coefficient, K

ae
 (where P

ae
 = 0.5γK

ae
H2) for

different values of horizontal seismic coefficient (k
h
)

with k
v
 = 0.5k

h
, φ = 350, δ = φ/2, H/λ = 0.3, H/η =

0.16 calculated by Mononobe-Okabe method and
present study respectively. It is evident from Fig. 9
that, seismic active earth pressure coefficient by
present study is maximum as compared to Mononobe-
Okabe which is desirable for the design purpose. Again
Fig. 10 shows the comparison of seismic passive earth
pressure coefficient, K

pe
 (where P

pe
 = 0.5γK

pe
H2) for

different values of horizontal seismic coefficient (k
h
)

with k
v
 = 0.5k

h
, φ = 350, δ = φ/2, H/λ = 0.3, H/η =
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K
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0.16 calculated by Mononobe-Okabe method, pseudo-
static approach by Choudhury (2004) and present study
respectively. It is clear from Fig. 10 that, seismic
passive earth pressure coefficient by present study is
minimum and thus proves to be safer as per the design
criteria as compared to other methods which is again
desirable for the design purpose.

For the case of k
h
 = 0.2, k

v
 = 0.5k

h
, φ = 350, δ =

φ/2, H/λ = 0.3, H/η = 0.16, comparison of present
results with conventional Mononobe-Okabe method
for non-dimensional seismic active earth pressure
distribution is shown in Fig. 11. Under the seismic
condition, the non-linear active earth pressure
distribution and hence the change of point of
application from the static case is clearly shown in
Fig. 11 compared to the results obtained by pseudo-
static method. This non-linearity of seismic active
earth pressure distribution was also monitored by
Steedman and Zeng (1991) in centrifuge tests. Again,
for the case of k

h
 = 0.2, k

v
 = 0.5k

h
, φ = 350, δ = φ/

2, H/λ = 0.3, H/η = 0.16, comparison of present
results with conventional Mononobe-Okabe method
for non-dimensional seismic passive earth pressure
distribution is shown in Fig. 12. Under the seismic
condition, the non-linear passive earth pressure
distribution and hence the change of point of
application from the static case is clearly shown in
Fig. 12 compared to the results obtained by pseudo-
static method.

Figure 9. Comparison of typical results of seismic active
earth pressure coefficient, K

ae
 for different values of

horizontal seismic coefficient (k
h
) with k

v
 = 0.5k

h
,

φ = 350, δ = φ/2, H/λ = 0.3, H/η = 0.16.

Figure 10. Comparison of typical results of seismic
passive earth pressure coefficient, K

pe
 for different

values of horizontal seismic coefficient (k
h
) with k

v
 =

0.5k
h
, φ = 350, δ = φ/2, H/λ = 0.3, H/η = 0.16.
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CONCLUSIONS

The pseudo-dynamic method of analysis, presented in
this paper, highlights the effect of time and phase
change in shear and primary waves propagating in the
backfill behind the rigid retaining wall on the seismic
earth pressures. It gives more realistic non-linear
seismic active earth pressure distribution behind the
retaining wall as compared to the Mononobe-Okabe
method using pseudo-static approach. But the
conventional pseudo-static approach gives only linear
earth pressure distribution irrespective of static and
seismic condition leading to a major drawback in the
design criteria.

The seismic passive earth pressure is more
sensitive to wall friction angle as compared to the
seismic active earth pressure. By applying the pseudo-
dynamic method presented in this paper, the seismic
active earth pressures are more and seismic passive
earth pressures are less as compared to those
calculated by using conventional pseudo-static method
of analysis. Thus the present method gives the
desirable design values of seismic active and passive
earth pressure coefficients compared to the existing
values by pseudo-static method as it leads to safe
approach of design of retaining wall against devastating
effect of earthquake.

APPENDIX : LIST OF NOTATIONS

a
h
, a

v
 = amplitude of horizontal and vertical seismic

acceleration respectively

g = acceleration due to gravity
H = height of the retaining wall
K

ae
, K

pe
 = seismic active and passive earth pressure

coefficient respectively
k

h, 
k

v
 = seismic acceleration coefficient in the

horizontal and vertical direction respectively
P

ae
, P

pe
 = pseudo-dynamic active thrust and passive

resistance respectively
Q

ha
, Q

va
 = horizontal and vertical inertia force due to

seismic accelerations respectively in active case
Q

hp
, Q

vp
 = horizontal and vertical inertia force due to

seismic accelerations respectively in passive case
t = time
T = period of lateral shaking
V

s
, V

p
 = shear and primary wave velocity respectively

α
a
 = angle of inclination of the failure surface with

the horizontal in active case
α

p
 = angle of inclination of the failure surface with

the horizontal in passive case
γ = unit weight of the soil
φ = soil friction angle
δ = wall friction angle
ω = angular frequency of base shaking
ζ = t – H/V

s

ψ = t – H/V
p

λ = TV
s

η = TV
p
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