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ABSTRACT

The present article deals with the propagation of SH-waves in a multilayered porous media with
Weiskopf type anisotropy. Using Biot’s theory of porous medium, the problem has been formulated.
The finite difference method has been used here to model the wave propagation problem and also
to analyze the effect of porosity and anisotropic factors on the phase and group velocities. Three-
dimensional diagram has been developed to describe the displacement of the SH wave propagation
as a function of two variables x and z. Also, the relation has been developed between the incremental
displacement and the time, which is shown graphically. The convergence and stability criteria of
the finite difference method has been established i) to minimize the exponential growing of the
error; ii) to make the finite difference method stable; and iii) to decide the valid range of numerical

values of the parameters.

INTRODUCTION

The near surface of the earth consists of layers of
different types of material properties overlying a half
space of various types of rocks, underground water,
oil and gases. So, the studies of the propagation of
seismic waves will be of great interest to seismologist.
Such investigations will help them to obtain
knowledge not only of geological structure, but also
about the rock structure of the earth. The knowledge
of seismic waves will help in investigating the
exploration of oil, underground water and gas
accumulation. In recent years, efforts have been made
in using seismic methods to characterize hydrocarbons
reservoirs, to monitor reservoir production and to
enhance oil recovery processes.

Modeling of seismic wave propagation, reflection
and refraction plays a very important role in
exploration of petroleum, civil engineering, earthquake
disaster prevention and signal processing. A model of
the earth’s interior and surface geological structures
may be assumed to be consisting of liquid-filled porous
layers at which density and elastic modulii change
discontinuously. Biot (1956) has established the theory
of the propagation of elastic waves in a porous elastic
solid saturated by a viscous fluid. Based on this theory,
the problems of wave propagation in porous media
have been discussed by Deresiewicz (1961),
Chakraborty and Dey (1982), Kalyani and Kar (1986),
Kar and Kalyani (1989). Considerable experimental
work (Laughton, 1954) has also been performed to
investigate the seismic properties of marine sediments.

The theory of Wood (1941) and Nafe and Drake (1957)
are of much importance in practice for the sediments.

The geophysical industry has been actively involved
in the development and use of finite-difference
methods for seismic modeling since last forty years.
These methods are very efficiently introduced by many
researchers into exploration studies to simulate
seismic wave propagation and to seismic data. Various
techniques including finite differences (Alterman &
Karal 1968, Mufti 1985, Kelly et. al. 1976), finite
element (Chen, 1984), Fourier or pseudo spectrum
methods (Kosloff & Baysal 1982) and hybrid methods
(Shtivelman 1985, Gazdag 1981) have been developed
by many authors to explore wave propagation
problems. Unfortunately, the finite-element method
is computationally expensive and requires large
amounts of computer memory. Among the various
techniques available for seismic modeling, the finite-
difference method is particularly versatile in studying
seismic wave behavior and in obtaining fast and
accurate solution of the same equation. The finite-
difference scheme, based on the first-order velocity-
stress hyperbolic system of elastic wave equation, is
computationally less expensive and stable for all values
of Poisson’s ratio with small numerical dispersion.
Most schemes for solving the wave propagation
problem involve some sort of approximation but the
finite difference method provides accurate and detailed
predictions of the displacement of the wave propagation
throughout the medium. On the contrary, analytical
solutions at all the points of the medium are not
possible. Keiswetter et al. (1996) in his paper
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presented entire computer program (FDMODEL) based
on finite-difference techniques to approximate the
solution of the two-dimensional acoustic,
heterogeneous wave equation. This program uses
explicit approximations of second-order accuracy for
both the spatial and temporal sampling intervals, and
energy-absorbing boundary conditions.

In the present work, Biot’s theory of porous media
has been used to formulate the problem. Also, finite—
difference method is applied to calculate group and
phase velocities of SH-wave propagation in a
multilayered porous medium for different values of
anisotropy and porosity parameters of the medium.
The stability criteria are established for the finite
difference approximation in time and space for
existence of pure SH-wave propagation. It also
minimizes the exponential growth of the error with
time to make the finite difference scheme stable and
convergent.

FORMULATION OF THE PROBLEM

Let us consider a liquid-saturated anisotropic porous
crust consisting of (n-1) parallel layers overlying a half-
space, as shown in Fig.1. The layers are numbered
serially, the layer at the top being layer no.1 and the
half space being layer no. n. The origin of a right-
handed cartesian coordinate system (x, y, z) is
considered at the free surface with the z-axis drawn
into the half-space and the y-axis pointing positively
from the plane of the paper towards the reader.

The equations of motion in a liquid-filled porous
medium Biot (1956), are given by

(0) Surface

ot 9dt, odt_. 9°

XX Xz - + U
ax + ay + aZ atz (p]]ux p12 x)
o7 9’
a_x:a7(p12”x+pzzUx)

where 1, T, ... are the components of the stress
tensor and T, the force exerted by the fluid on the
fraction of an area of the unit cross section of the
aggregate is related to the pressure p of the fluid by

_T:Bpr

where B is the porosity of the layer. Here u,, u and
u_ are the components of the displacement vector u
of the solid and U, U  and U, is that of liquid. The
coefficients p,,, p,,, p,, are the mass coefficients
related to the mass of the solid p(s) and that of the
liquid p(f), each measured per unit volume of the
aggregate, by means of

pls) = py + Py, ) =Py, + 9,y

and, moreover, obey the inequalities

Py, >0, py, >0, p,, <0

Piy Py — plzz >0
Also,
pls) = (1-B) p, and p(f) = Bp,,

where p_and p, are the mass densities of the solid and
the liquid, respectively; the mass density of the
aggregate is given by

Free surface layer

¥
N

Vv

Figure 1. Geometry of the problem
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pP=p,+2p,+p,

The stress strain relations for the liquid filled porous
medium are (Biot 1956, Weiskopf 1945) given by

T, =2Ne  +Ae+09, )
T, =2Ne, +A4e+089,
T_=2Ne_+A4e+00, b
T, = Ne,, - (2)
T, =Ge,
TZX :Ger )
and
T=Qe+ RO

where e = Div i and q = Div U and A, N correspond
to the familiar Lame coefficients in the theory of
elasticity and are positive. Moreover, the coefficient
N represents the shear modulus of the material, the
coefficient R is a measure of the pressure on the liquid
while the total volume remains constant.
Furthermore, the coefficient Q characterizes the
coupling between the volume change of the solid and
that of liquid.

For the propagation of SH-waves parallel to the x-
axis and z-axis pointing downwards,

u,=0=u_, u, =v(x,z,1),
U.,=0=U,, U, =V(x,z,1),
(3)

Thus, the equation of motion in the m® layer is
given by

v, %y, v,
N, " +G, = =d = .. (4)
in which
2(m)
m P
=p - m=1,2,
P,

FINITE DIFFERENCE APPROACH

The finite difference is one of the most important
methods to solve wave equation numerically. In finite
difference scheme, the partial differential equation is
replaced with a discrete approximation and then
advancing the solution in time domain to get the
accurate solution. The word “discrete”, comes from
the 15th Century Latin word discretus, is defined as
a finite number of points in the domain. Increasing
the number of mesh points in the domain, the

accuracy of the numerical solutions can be increased.
The mesh is the set of locations where the discrete
solution is obtained and these points are also called
nodes. The main idea of the finite-difference method
is to replace partial derivatives with difference formulas
that involve only the discrete values associated with
positions on the mesh. Fig.1 represents a vertical
section of a liquid-filled anisotropic porous crust
consisting of (n-1) parallel layers overlying a half-space.
For the development of a finite difference model, a
finite rectangular portion of the medium is considered
and it is discretized by introducing a grid on the xz
plane with equal increments of Ax and Az along the
x and z-axes respectively. Also, At is the measure of
discretization in time. By applying finite difference
method, one can obtain an approximate solution for
v (X, z, t) at a finite set of x, z and t. For the
development of the method, time-space grid is taken
as,

x =mAx, m = 0,1,2, ... M
z =nAz, n=0,12, .., N
t = 1A, =012, ..,L

1
Using the notation

1

v mn V( m’ n’ t])

and applying Taylor series for the expansion of v’
andv’ = respectively,

m-1,n

m+1,n

! av+Ax2 82\) (AX) 83

lm+ n = m.n +A .o 5
Ve sV TR T a3 ad 5
and
Vlm—l,n = Vlm,n 'AX Q +Ax2 & = Ma_sv +o. (6)
ox 2 ox? 31 ox’
one obtains by subtracting (6) from (5):
3
; ; (Ax) a’v
an-vm_n=2AX— 7
o - ox 3 ax 7
this gives
av: Vlln+l,11 - vin—l,n . (Ax)z 83\/ + (8)
dx 2Ax 31 ox’ B
This can also be expressed as
1 !
v -V, _
aV m+1,n m=1,n + O(AX 2) (9)

8v 2Ax

Assuming Ax small, central difference

. v
approximations of ™ is formed as
x
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1

/

aV o Vm+l,n - vm—l,n

ox

2Ax

... (10)

Instead of using the wave equation, which is a
second order hyperbolic system, the elastodynamic
equations are given by,

d azvm :aTW +3’Cyz

"ot ox oz
Ty =Nye, .. (11)
T, =Gmeyz

The above equations can be transformed into the
following first-order hyperbolic system:

%1 (o B )

of d {ox oz

a_aszﬁ >

ot ox ... (12)
B

ot oz J

The central finite-difference scheme developed in
(10) is used to discretize the derivatives of these
governing equations. Thus, the explicit numerical
scheme, equivalent to the system (12), is given by

vf]”:Il? _‘}llnj’ =i allnﬂ,n _(X‘/[nfl,n + Bf;_nﬂ _B /iukl
& d,| 2Ax 20
arl:llz _(Xrln_lll ‘}rerrl n _‘}rlnfl n
R L VY L
2N 2Ax
... (13)

Brlnfltzgf)rill — Gn,[‘}fn’n+12‘z rln,n—l J

where [ is the index for time discretization, m for x-
axis discretization, and n for z-axis discretization. At
is the grid step in time, Ax and Az are the grid steps
for the x-axis and for the z-axis, respectively.

J

Initial and Boundary Conditions

Under the initial conditions both stress and velocity
are zero everywhere in the medium at time t = 0 to
make the medium in equilibrium (Virieux 1986).
Boundary conditions considered here are the Neumann
condition (stress-free conditions) and the Dirichlet
condition (zero velocity or zero displacement
conditions).
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Stability Analysis

When the finite difference approximation is used to
solve the equation of motion of seismic wave
propagation in the time domain, the stability criteria
must be satisfied and the finite difference scheme
applied must be convergent and stable. By stability,
one means that errors made at one stage of
calculations do not cause increasingly large errors as
the computations progress, but rather error dies out.
Also by convergent one means that the results of the
method approach the analytical results as At and Ax
approach zero. Many authors (Cao & Greenhalgh
1998, Mitchell 1969) have developed stability for
different finite difference approximations The stability
condition obtained for the finite difference scheme
(13), using the initial error in o, B and v at t = 0, is
found to be

Sin(@Ar)= (C,8,Sin> (kAx )+ C,8,Sin> (Az)) > -(14]

where,
2 2
C =Moo JOn 5 (A 5 (2]
d, d, Ax Az

For the finite difference scheme (13) to be stable
|Sin(wAr)| should be always less than or equal to 1.
Consequently, o will be real, and the error will not
grow with time. Thus, the condition for stability is
to make the time-mesh interval At smaller than or

Ax .
Jc.+c, where Jexc; is the local wave

velocity for Ax = Az.

The stability condition (14) also gives the relation
between frequency and wave number k to be satisfied
by the solution. The phase and group velocities
determined by (14) approach the correct local values
if At, Ax and Az are small. Also, for small At, Ax and
Az one can approximate Sin® by 6 and obtain, from
(14),

%=,/CI+C2

It is important to know that how small Ax and
Az should be so that the above relation is
approximately correct. The limit depends on the

wavelength A = 2%,. Rewriting (14), the phase velocity
is given by

equal to

.. (15)
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in which, k = r and Ax = Az. The corresponding
group velocity, the rate at which energy is transported,
is given by

Al .
%0 C, +c, )E Sln(
o 2

e (a0
1 2 Ax 7\’

4nAx ]

Figure 2. Variations of Phase Velocity with Dispersion
Parameter when y=1 and N/G=1, 1.5, 1.75 in Layer.

Figure 4. Variations of Phase Velocity with Dispersion
Parameter when y=1 and N/G=1, 1.5, 1.75 in half-
space.

NUMERICAL RESULTS AND DISCUSSIONS

The numerical values of the phase velocities and group
velocities have been computed from equations (16) and
(17) respectively in non-dimensional form ak and dw/
Sk for different values of dispersion parameter Ax/A
for SH wave propagation in a layer overlying a half-
space. Fig. 2 depicts the effect of variations of
anisotropic parameter N/G on the phase velocity in
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Figure 3. Variations of Phase Velocity with Dispersion
Parameter when N/G=1 and y=1, 1.5, 2.0 in Layer.
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Figure 5. Variations of Phase Velocity with Dispersion
Parameter when N/G=1 and y=1, 1.5, 2.0 in half-
space.
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Figure 6. Variations of Group Velocity with Dispersion
Parameter when y=1 and N/G=1, 1.5, 1.75 in Layer.

Memb Dispi=0.180

Figure 8. Showing displacement as a function of x
and z

the layer with the increase in dispersion parameter Ax/
A, which indicates that the phase velocity increases
with the increase in dispersion parameter and attains
a maximum when the value of dispersion parameter
Dx/1 is nearer to 0.3 and thereafter decreases with the
increase in the dispersion parameter for all values of
N/G. From Fig. 3, it is observed that, the phase
velocity in the layer first increases and attains its
maximum for all values of porosity parameter y
(Kalyani et. al., 1986). On the other hand, the phase
velocity also decreases with the increase in dispersion
parameter for all values of porosity parameter y. In
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Figure 7. Variations of Group Velocity with Dispersion
Parameter when N/G=1 and y=1, 1.5, 2.0 in Layer.
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Figure 9. Showing displacement as a function of
time

Fig 4 the variations of phase velocity with dispersion
parameter in the half space indicate that the phase
velocity increases with the increase in dispersion
parameter, and attains maximum and then decreases
for all values of N/G. From fig. 5, it is observed that
the phase velocity in the half space first increases
attains maximum and then decreases with the
increases in dispersion parameter for all values of
porosity parameter. In the Figs.2-5, it is interesting
to note that all the curves in the figures are
intersecting at some point when the dispersion
parameter is nearer to 0.5.



Finite Difference Modeling of SH-Wave Propagation in Multilayered Porous Crust

Figs. 6-7 show the variations of group velocity as
a function of dispersion parameter for different values
of anisotropic factor and porosity parameter. From
these figures, it can be concluded that the group
velocity in the layer depend not only on dispersion
parameter but also on anisotropic factor N/G and
porosity parameter y. Fig. 8 is developed using the
software MATLAB showing the three dimensional view
of the displacement of the SH wave propagation as a
function of two variables x and z. Fig.9 depicts the
displacement as a function of time, which indicates
that the curve is oscillating when the time is in
between 0 and 0.02 for all values of porosity parameter.

CONCLUSIONS

The finite difference scheme is a straightforward
and practical way of solving a number of pertinent
seismological problems. The essence of this
technique is to replace the differential equations
and boundary conditions by simple finite difference
approximations in such a way that an explicit,
recursive set of equations is formed. The finite
difference method offers a most direct path from
the problem formulated in terms of basic equations,
initial and boundary conditions to the digital
computers, for solution with a minimum of
analytical effort. The above findings can be used in
the interpretation and simulation of geophysical
data. Moreover, the same can be implemented in
forecasting formation details.
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