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ABSTRACT
Various new techniques like neural networks, learning nonlinear dynamics and others are used
by researchers to predict solar activity. But we are yet to obtain reasonably good results. This is
mainly because the reason of the variation of solar activity is still unknown. Hence it is important
to analyze the characteristics of the data. This paper considers sunspot numbers as an index of
solar activity. The daily sun spot number data is analyzed using fractal technique and examined
to determine the predictability of solar activity. For the period 1990 to 2004, the average fractal
dimension for periods of 10 days or less was about 1.43. But during the same period, the average
fractal dimension was 1.72 for periods longer than 10 days. Hence the result is encouraging for
short-term prediction (i.e.) within about 10 days, but discouraging for medium-term prediction
(longer than 10 days).

INTRODUCTION

The extent of solar activity has a good correlation
with the sunspot numbers. Hence, sun spot numbers
are widely used as an indicator of solar activity. The
sun spot numbers finds its utility in selection of orbits
for satellites, prediction of High Frequency
propagation, prediction of weather and so on. Thus,
the prediction of sun spot numbers gains importance.
(Gorney  1990)

The recent techniques such as Neural networks
(Higuchi 1988) and learning nonlinear dynamics
(Koons & Gorney 1990) are being used to predict
sunspot numbers.  But, the mechanism of variation
of solar activity is still unknown and hence the sun
spot number is not clearly understood till date.

This paper uses the daily sun spot numbers as an
index of solar activity and the data is subjected to
fractal analysis. The fractal dimension values thus
obtained is used as an indicator to examine the
predictability of solar activity.

DATA

We have used the daily sun spot numbers for the a
period of fifteen years from 1990 to 2004. The
international sunspot number is produced by the
Solar Influences Data Analysis Center (SIDC), World
Data Center for the Sunspot Index, at the Royal
Observatory of Belgium.

The relative sunspot number is an index of the
activity of the entire visible disk of the Sun. It is
determined each day without reference to preceding
days. Each isolated cluster of sunspots is termed a
sunspot group, and it may consist of one or a large
number of distinct spots whose size can range from
10 or more square degrees of the solar surface down
to the limit of resolution (e.g., 1/25 square degree).
The relative sunspot number is defined as R = K (10g
+ s), where g is the number of sunspot groups and s
is the total number of distinct spots. The scale factor
K (usually less than unity) depends on the observer
and is intended to effect the conversion to the scale.

FRACTAL ANALYSIS

Method for calculating the  Fractal Dimension

Various techniques are available to calculate the
fractal dimension of the given time series data. They
are

a. Power spectrum analysis method
b. Burlaga and Klein method [Burlaga and Klein,

1986]
c. Higuchi method [ 2]
The Higuchi method give relatively accurate

results and hence we used the same to calculate the
Fractal Dimension (D). The method is as described
subsequently.

We now consider a finite set of time series
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observations taken at a regular interval:

X(1), X(2), X(3), ……………, X(N)

Where N is the total number of observations of the
given time series.

From the given time series, we first construct a

new time series,  X
m
k ,  defined as follows:

X m
k ; X(m), X(m+k), X(m+2k),….X
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Where [   ] denotes the Gauss’ notation and both k
and m are integers.
m is the initial time and
k is the interval time.

For a time interval equal to k, we get k sets of new
time series. In the case of k=3 and N=100, the three
time series obtained by  the above process are
described as follows:
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We define the length of the curve, Xkm as follows:
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The term , N-1/[(N-m)/k].k represents the
normalization factor for the curve length of the subset
time series. We define the length of the curve for the
time interval k, <L(k)>, as the average value over k
sets of Lm(k). If <L(k)>  k-D, then the curve is
fractal with the dimension D.

Fractal dimension for daily sunspot numbers

First we make a new time series with daily sunspot
numbers for a year and calculate <L(k)> as defined
above in method for calculating the fractal
dimension. Then we plot the logarithm of length, log
<L(k)>, as a function of log k. The unit of k is a
day in our case since we use the daily sun spot
number data. If  <L(k)> á  k-D, we judge that the
curve is fractal. Then we deduce fractal dimension(D)
from the slope of a plot.

Table 1. An example of calculated values of <L(k)>
for the daily sun spot number, 1990

k <L(k)>

1 5032

2 2044.5

3 1231.333

4 844.375

5 625.6

6 484.1111

7 389.7347

8 321.6406

9 271.3827

10 231.54

11 199.5207

12 173.1945

13 150.2308

14 129.7551

15 112.2445

16 96.79297

17 83.97578

18 73.11112

19 63.54847

20 55.5725

21 49.06575

22 43.55785

23 38.5482

24 34.22396

25 30.4784

26 27.8432

27 25.76818

28 24.19133

29 23.09275

30 22.44778

31 21.72112

32 21.2041

33 20.76401

34 20.1436

35 19.67429

An example of the curve length <L(k)> for the
time series of daily sunspot numbers in 1990, on a
doubly logarithmic scale was plotted and is shown in
fig.1. We can determine fractal dimension (D) from
the slope of this plot.
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Figure 1. An example of the <L(k)> for the time series of daily sunspot numbers in 1990 as a function of day
on a doubly logarithmic scale.

Figure 2. Annual variation of Fractal Dimension for short term range and long term range.
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In the case of 1990 data, the curve breaks at
about 10 days. The fractal dimension is 1.33
within 10 days with a standard error [S.E.(D)] value
of 0.0125 and is 1.70 for longer than 10 days
with a standard error [S.E.(D)] value of 0.0425.  A
time series is originally one-dimensional data;
hence fractal dimension is 1 for a regular time
series, and it is 2 for a completely random time
series.  Fractal dimension for the shorter time scale
expresses more regular variation than one for the
longer time scale shown in Figure 1. Fractal
dimension, 1.70, for the longer time scale is fairly
close to 2. This implies randomness of the time
series and difficulty of prediction for this time
range.

Annual variation of fractal dimension

Yearly variation of fractal dimension, deduced by
daily sunspot numbers is shown in fig.  2.
Yearly sunspot numbers vary with the 11-year
solar cycle. However, yearly values of fractal
dimension do not change in correspondence to
solar activity.

This result implies that solar activity for
short and medium time scales is not affected by
long-term solar variation such as the 11-year
cycle.

CONCLUSIONS

The fractal analysis method was adopted to examine
a time series of daily sunspot numbers. We can
evaluate randomness of a time series by determining
fractal dimension. The average fractal dimension
between 1990 and 2004 was about 1.43 within 10
days and about 1.72 for periods longer than 10 days.
It should be noted that the data exhibits Power Law
(Fractal) behavior for shorter time scales and becoming
completely random (or unpredictable) for longer time
scale. This result reveals the possibility of short-term
prediction and the difficulty of medium –term
prediction (longer than 10 days).

Sunspot numbers vary according to the 11-year
solar cycle. However, annual values of fractal
dimension do not change in concert with this cycle.
This may suggest that the physical mechanism
producing short and medium-scale time variation
does not change throughout the 11 - year cycle.
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