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ABSTRACT
Two simple and interesting rules are derived by extending the line integral method to find the 
equations for the gravitational attraction components due to a planar surface in the directions 
perpendicular and parallel to the surface itself. The attraction components, GAB^ and GAB||, 
perpendicular and parallel to the surface AB are given by GAB^ = 2 g s R (ØB – ØA) and GAB|| = 
2 g s R ln (rA / rB), where R is the perpendicular distance from a point of calculation to the face 
AB, rA and rB  are the lengths of the radius vectors of A and B, ØA and ØB are the angles made 
by them with X-axis. These rules are found to be useful to derive the vertical and horizontal 
components of gravitational attractions of two dimensional bodies bounded by planar surfaces 
and their applicability is demonstrated by deriving the equations for gravity anomalies of finite 
inclined dike and trapezoidal prism. The correctness of the anomaly equations are verified by 
calculating and comparing the anomalies of dike and trapezoidal models with corresponding 
polygon models. The stability of inversion with these models and also with polygon models are 
studied by carrying out inversion of synthetic and field gravity anomalies. 

INTRODUCTION

Interpretation of gravity anomalies is ambiguous 
unless the shape of the causative body is known 
(Roy, 1962). It is a common practice to assign a 
regular shape to the causative body, mainly based 
on geological constraints, to facilitate a meaningful 
interpretation. In the inverse modeling of gravity 
anomalies, the solution is stable if we constrain 
the geological model by a set of parameters. Fairly 
large number of parameters can be interpreted by 
the optimization techniques such as Marquardt’s 
algorithm. The derivation of anomaly equation for a 
suitable model is an important aspect in the inverse 
modeling. A straight forward method of deriving 
the anomaly equation of a two-dimensitional body 
involves surface integration over the cross-section of 
the body. It has been observed that the derivation of 
anomaly equations of even simple models demands 
considerable effort (Bhimasankaram, Nagendra and 
Seshagiri Rao, 1977a; Bhimasankaram, Mohan and 
Seshagiri Rao, 1977b).

Gulatee (1938) published simple rules for vertical 
magnetic anomaly of two-dimensional bodies with 
planar surfaces, where as such equivalent rules are 
not published in the gravity data. During the course 
of interpretation of the gravity anomalies of different  

models, two interesting and simple rules have been 
found to derive the equations for gravity anomalies of 
various two dimensional models with planar surfaces. 
Hubbert (1948) has shown that the surface integral 
can be replaced by a line integral, and developed 
graticules to calculate the vertical component of 
gravitational attraction. Talwani et al (1959) have 
derived equations for the vertical and horizontal 
components of gravitational force of attraction of two-
dimensional n-sided polygon. However, the inversion 
of the gravity anomalies with these equations is not 
stable in many cases as the number of parameters 
involved is more compared to the anomaly equations 
presented with model parameters. In this paper  a 
method has been developed  in which even the line 
integral can be evaluated by a set of rules, thus 
facilitating in easy derivation of anomaly equations 
of two-dimensional models with planar surfaces, 
and present the anomaly equations in terms of 
model parameters. This is another way of presenting 
the gravity anomaly equations apart from Talwani 
et al (1959). These rules are similar to Gulatee’s 
(1938) in the magnetic case. As an illustration of 
the method, anomaly equations of an inclined dike 
and symmetrical trapezium are derived. Forward 
and inverse modeling have been carried out with 
these equations and compared with the equations of 
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Talwani et al (1959).

METHOD

Let AB represent a planar surface of a two-dimensional 
body dipping at an angle q with the horizontal with 
reference to XOZ coordinate system (Fig.1).  Let 
S(X, Z; r, Ø) be any point on the line AB.  The line 
AB is any side of closed vertical cross-section of any 
two-dimensional body such as inclined dike (Fig. I), 
trapezium (Fig. II), etc.
Then the line integrals

	 VAB = 2 g s ∫ Z d Ø		  ……. (1)
          		       AB
and  	 HAB = 2 g s ∫ X d Ø		  ……. (2)
                          AB

represent the vertical and horizontal components 
of gravitational attraction due to the face AB at the 
origin, O (Talwani et al, 1959).  Let rA and rB be the 
lengths of the radius vectors of the points A and B 
respectively and let ØA and ØB be the respective angles 
made by them.  Let R represents the perpendicular 
distance from the origin to the face AB.  Instead of 
evaluating the vertical and horizontal components 
as given by equations (1) and (2), we evaluate the 
attraction components along perpendicular and 
parallel directions to AB.  To achieve this, the 
coordinate system has been rotated by an angle q in 
the clockwise direction. The new coordinate system 

is represented by X’OZ’ such that OX’ and OZ’ are 
parallel and perpendicular to AB respectively.   The 
angles made by the radius vectors rA and rB are given 
by Ø’A and Ø’B respectively, and are obtained by 
subtracting q from ØA and ØB.  Let the coordinates 
of the point S with reference to X’ OZ’ be (X’, Z’; r, 
Ø’).  Then the line integrals

	 GAB^ = 2 g s ∫	Z’ dØ’	           …….(3)
                           AB
and  	 GAB|| =  2 g s ∫ X’ dØ’	           …….(4)
                            AB

represent the components of gravitational attraction 
along Z’ and X’ axes respectively.  In other words, 
these represent the components of gravitational 
attractions of AB along perpendicular and parallel 
directions to the face AB, and could easily be 
evaluated.  Along AB, Z’ remains constant and hence, 
the perpendicular component is given by

GAB^ = 2 g s Z’ ∫ dØ’ = 2 g s Z’ (Ø’B – Ø’A) =  
		   AB	 2 g s Z’ (ØB – ØA) ….(5)
                         
The parallel component can be evaluated from tan 
Ø’ = Z’/X’ and hence, dØ’ = –  (Z’/r2) dX’, where r2 

= X’2+Z’2 = X2 + Z2. The parallel component is, 
therefore, given by 

GAB||  = 2 g s ∫ X’ dØ’ = 2 g s Z’ ln (rA / rB)   ...(6)
                  AB       

Figure 1. Transformation of coordinate system to evaluate the gravitational attraction components
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In equation (5) and (6), Z’ represents the 
perpendicular distance from the origin to the face 
AB, and hence these could be given by

GAB^ = 2 g s R (ØB –	 ØA)		  ………  (7)
and     
GAB‌|| =  2 g s R ln (rA / rB).		  ………. (8)

The values of R, ØA, ØB, rA and rB in equations 
(7) and (8) do not depend on the X’ O Z’ coordinate 
system. Hence, if the perpendicular distance from the 
point of calculation is known, then the equations (7) 
and (8) could be used directly to give the attraction 
components along perpendicular and parallel 
directions to the face.  It should be noted that the 
direction of GAB^ is along the perpendicular to the 
face from the origin (point of calculation) and the 
direction of GAB^ is along parallel to the face such 
that this mutually perpendicular system conforms 
to the XOZ coordinate system. The angles ØA and 
ØB should be measured from positive X-axis towards 
positive Z-axis. 
          In other words R in equations (7) and (8) is 
considered to be positive if it meets the outer side of 
AB, and negative if meets the inner side of AB.  If 
q is the dip of the face AB measured positive in the 
clockwise direction from the horizontal, the vertical 
and horizontal components of gravitational attraction 
due to the face AB are given by

VAB = GAB^  cos q + GAB‌|| sin q
     = 2 g s R [ (ØB – ØA) cos q + ln (rA / rB) sin q]	

……. (9)
HAB = – GAB^  sin q + GAB‌|| cos q 
   = 2 g s R [– (ØB – ØA) sin q + ln (rA / rB) cos q]      

………. (10)

Equations (9) and (10) are useful to give the 
contributions of the face AB directly towards the 
vertical and horizontal components of gravitational 
attraction in terms of the parameters defining the 
model.

GRAVITY ANOMALIES

Application of the above method has been 
demonstrated by deriving the equations for the vertical 
and horizontal components of gravity anomalies of 

inclined dike and symmetrical trapezoidal models, 
and is given in the appendix. The resulting equations 
are simple, compact and convenient compared to 
those appearing in the literature. These equations 
are verified by calculating the anomalies with 
Z1=1.0 km, Z2=5.0 km, T=2.0 km, D=10.0 km, 
q=600 and s=0.3gm/cc for both dike and trapezoidal 
models and are given in Table 1. The anomalies are 
also calculated with Talwani’s equations with the 
corresponding values for the X-vertices: 12.0, 14.31, 
10.31, 8.0 and the Z-vertices: 1.0, 5.0, 5.0 and 1.0 
for the dike model and the X-vertices: 12.0, 14.31, 
5.69, and 8.0 and the Z-vertices: 1.0, 5.0, 5.0, 1.0 
for the trapezoidal model and are given in Table 1. 
It is found that the anomalies obtained by both the 
methods are coinciding with each other in the two 
cases, and thus confirming the correctness of the dike 
and trapezium anomaly equations.

INVERSION

The gravity anomalies (vertical field) given in Table 
1 for dike and trapezoidal models are considered for 
comparison with the inversion of the anomalies. As 
the inversion also estimates the regional, a regional 
field of 10 mgals is added to these anomalies. 
The inversion is carried out using the Marquardt 
algorithm (Bhaskara Rao and Ramesh Babu 1991, 
1993).  The dike anomalies with two decimal 
accuracy is taken and carried out the inversion using 
the initial values for Z1 = 0.5 Km, Z2 = 4.0 Km, T 
= 1.5 Km, D = 11.0 Km, q = 600, s = 0.3 gm/cc 
and the Datum = 5.0 mgal and all the parameters 
of the dike are accurately obtained. Similar results 
are also obtained with the polygon model with 
corresponding initial values.  To stimulate errors, 
the data is truncated to 1 mgal accuracy and the 
inversion is carried out using the dike model and the 
polygon model.  Satisfactory results are obtained with 
dike and polygon models with the density contrast of 
0.3 gm/cc. However, satisfactory results could not be 
obtained with polygon model of five and more vertices 
even when the density contrast is constrained.  The 
anomalies due to trapezoidal model are also inverted 
with the equations given in the text and also with 
polygon model.  As in the case of the dike model 
similar results are obtained here also. These results 
show that inversion with regular models is more 
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stable than with polygon model.  
The anomalies of the polygon ABCDE with 

vertices (10.0,1.0), (14.0,3.0), (12.0,6.0), (8.0,5.0) 
and (7.0,2.0) are calculated with a constant density 
contrast of 0.3gm/cc and a constant regional of 10.0 
mgal is added to these anomalies and plotted in Fig 
.2. Inversion of these anomalies is carried out using 
the polygon model with  six vertices and dike and 
trapezoidal models by the Marquardt algorithm. The 
density contrast of 0.3gm/cc is constrained in all 
these three cases.  The results of inversion for the 

polygon model are shown as dotted lines in Fig.2. 
Satisfactory model is not obtained with six vertices. 
The model is still worse with seven and more 
vertices. The inversion results for the dike and 
trapezium are also plotted in Fig.2. These studies 
show that the inversion with dike and trapezoidal 
models is satisfactory and more stable compared 
with polygon model.

Fig.3 shows the interpretation of a gravity 
anomaly profile over the lower Godavari valley, 
Andhra Pradesh, India, located approximately at 

Table 1. Gravity anomalies of dike and trapezium

x

DIKE TRAPEZIUM

        ∆g(x) ∆H(x)                ∆g(x)                  ∆H(x)

Present 
method

Talwani 
method 

Present 
method

Talwani 
method

Present 
method

Talwani 
method

Present 
method

Talwani 
method

0 1.40 1.40 5.41 5.41 3.15 3.15 9.22 9.22

1 1.67 1.67 5.88 5.88 3.84 3.84 10.00 10.00

2 2.02 2.02 6.43 6.43 4.75 4.75 10.89 10.89

3 2.50 2.50 7.08 7.08 5.99 5.99 11.86 11.86

4 3.16 3.16 7.85 7.85 7.68 7.68 12.85 12.86

5 4.11 4.11 8.77 8.77 10.02 10.02 13.76 13.76

6 5.57 5.57 9.84 9.84 13.22 13.22 14.28 14.28

7 7.93 7.93 10.93 10.93 17.45 17.45 13.82 13.82

8 11.76 11.79 11.20 11.21 22.30 22.33 11.23 11.21

9 16.28 16.28 8.94 8.94 25.80 25.80 6.04 6.04

10 19.24 19.23 4.43 4.44 26.89 26.89 -0.01 0.00

11 19.89 19.89 -1.06 -1.06 25.80 25.80 -6.04 -6.04

12 17.83 17.80 -6.19 -6.21 22.36 22.33 -11.20 -11.21

13 13.96 13.96 -9.04 -9.04 17.45 17.45 -13.82 -13.82

14 10.50 10.50 -9.82 -9.82 13.22 13.22 -14.28 -14.28

15 7.86 7.86 -9.63 -9.63 10.02 10.02 -13.76 -13.76

16 5.94 5.94 -9.05 -9.05 7.68 7.68 -12.85 -12.86

17 4.55 4.55 -8.34 -8.34 5.99 5.99 -11.86 -11.86

18 3.55 3.55 -7.64 -7.64 4.75 4.75 -10.89 -10.89

19 2.83 2.83 -6.98 -6.98 3.84 3.84 -10.00 -10.00

20 2.29 2.29 -6.40 -6.40 3.15 3.15 -9.22 -9.22
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Figure 2. Inversion of gravity anomalies over a polygon model

Figure 3. Inversion of gravity anomalies over Godavari valley
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17°N and 81°E with a strike direction NW-SE using 
trapezoidal and polygon models. This profile is taken 
from Bhaskara Rao and Venkateswarulu (1974), 
who interpreted it by considering the basin as two 
outcropping faults with constant density contrast of 
-0.4gm/cc. The depth to top and density contrast for 
both the models are constrained at 0.001 km and 
-0.4gm/cc respectively. The results of inversion for 
these models are plotted in Fig .3. These results are 
nearly the same.

DISCUSSION

The line integral method is extended to derive the 
equations for the gravitational attraction components 
due to a planar surface of a two-dimensional body, 
in the directions perpendicular and parallel to the 
surface itself.  These attraction components are 
related to various geometrical elements of the face 
in a simple manner as given by equations (7) and 
(8). Many structures in sedimentary strata could 
be approximated by models bounded by planar 
surfaces.  This method is used here to derive the 
equations for the vertical and horizontal components 
of gravitational attractions of finite inclined dikes 
and trapezoidal prisms.  The resulting equations are 
simple, compact and convenient to program than the 
corresponding equations appearing in the literature. 
The method is particularly simplified if some of the 
faces of the model are horizontal and / or vertical 
as the horizontal and vertical components could 
be directly obtained.  As seen in various examples 
given in the text, the perpendicular distances even 
to inclined faces can be obtained easily. These 
equations are similar to Gulatee’s (1938) rules in 
the magnetic case. The method developed in this 
paper is useful to the students as well as researchers 
as the gravity anomaly equations could be derived 
very easily for any two-dimensional model bounded 
by planar surfaces. This is another way of presenting 
the anomaly equations in terms of parameters of the 
model instead of vertices.

Anomalies calculated using the anomaly equations 
of dike and trapezoidal models are coinciding with 
the anomalies calculated using polygon models 
with corresponding values of the vertices, thus 
confirming the correctness of the equations derived 
in the text. Inverse modeling is carried out using 
dike and trapezoidal models and compared with the 

polygon model. The results show that the inversion 
with regular models is more stable than with 
polygon models in some cases. The equations (7) 
and (8) derived here are useful to consider a suitable 
model depending on the geology and derive the 
corresponding equations easily.
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APPENDIX

The anomaly equations for finite inclined dike and 
trapezoidal models are derived here as follows: 

a) FINITE INCLINED DIKE

Let OX represents the X-axis perpendicular to 
the strike of a finite inclined dike, whose vertical 
cross-section is given by ABCD (Fig. I). The origin 
of the coordinate system is chosen at O, which is the 
epicenter of a point bisecting AB. Z axis is positive 
downwards.  The dike is dipping at an angle q, whose 
upper and lower surfaces are at depths of Z1 and Z2 
respectively.  The width of the dike is given by 2T. 
Let r1, r2 ,r3 and r4 be the radius vectors from the 
point P(X ,O) to A,B,C and D respectively.  Let Ø1, 
Ø2, Ø3 and Ø4 be the angles made by the radius 
vectors r1, r2, r3 and r4 respectively with X-axis.  
Lines CB and DA are extrapolated so that they meet 
X-axis at E and F respectively, and PQ and PR are 
perpendiculars from P to BC and AD respectively.  
Let PQ = R1 and PR = R2.  From Fig. I,  EP = X – 
T + Z1 cot q.   Hence, R1= EP sin q = (X– T) sin 
q + Z1 cos q.   Similarly, R2 = FP sin q = (X+T) 
sin q + Z1 cos q.

Let us evaluate the attraction components of AB, 
BC, CD and DA in the directions perpendicular 
and parallel to themselves.  From equation (7), the 
gravitational component perpendicular to AB, GAB^ 

is given by
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	 GAB^ =  2 g s Z1 (Ø2 –Ø1)

Similarly, from equation (8) the gravitational 
component parallel to AB, GAB||, is given by

	 GAB|| = 2 g s Z1 ln (r1 / r2).

Here the dip of the face is 00 and hence, the vertical 
and horizontal components, from equations (9) and 
(10) are given by

	  VAB =  2 g s Z1 (Ø2 –  Ø1)
	  HAB =  2 g s Z1 ln (r1/r2).

The gravitational component perpendicular to BC, 
GAB^ 

is given by

GAB^=  2 g s R1 (Ø3 – Ø2).

The gravitational component parallel to BC, GBC|| 
is given by

GBC|| = 2 g s R1 ln (r2 / r3).

Here the dip of the face is q and, hence, from 
equations (9) and (10),

VBC = GBC^ cos q + GBC|| sin q
       =  2 g s R1 [ (Ø3 – Ø2) cos q + ln (r2 / r3) sin q ] 
          and     
HBC =  – GBC^ sin q +  GBC|| cos q
        = 2 g s R1 [– (Ø3 – Ø2) sin q + ln (r2 / r3) cos q]   

The gravitational component perpendicular to CD, 
GCD^, is given by

GCD^ =  – 2 g s Z2 (Ø4 – Ø3).

The gravitational component parallel to CD, GCD||, 
is given by
GCD|| = – 2 g s Z2 ln (r3 / r4).

Here the dip of the face is 1800 and hence, the 
vertical and horizontal components are given by

	 VCD =  2 g s Z2 (Ø4 – Ø3)
and	 HCD =  2 g s Z2 ln (r3 / r4).

The gravitational component perpendicular to DA, 
GDA^ is given by 

GDA^ = –  2 g s R2 (Ø1 – Ø4).

The gravitational component parallel to DA, GDA|| 
is given by

GDA|| = –  2 g s R2  ln (r 4 / r1).

Here the dip of the face = π + q. Hence, the vertical 
and horizontal components are given by

VDA = GDA^ cos(π+q) + GDA|| sin (π+ q)        	
         = 2 g s R2 [ (Ø1 – Ø4) cos q + ln (r4 / r1) sin q  ]      
HDA = – GDA^ sin (π+q ) + GDA|| cos (π+q)
       = 2 g s R2 [– (Ø1 – Ø4) sin  q + ln (r4 / r1) cos q] .   

Figure I. Geometrical elements involved for a finite inclined dike. 



D.Bhaskara Rao

136

The vertical and horizontal components of the 
dike can be obtained by summing the respective 
components of the individual faces.  Thus,

V(X,O)   = VAB+VBC+VCD+VDA

               =  2 g s [Z1 (Ø2 – Ø1 )   +Z2 (Ø4 – Ø3)+R1{( 
Ø3 – Ø2) cos q + ln(r2/r3) sin q}+R2{( Ø1 – Ø4)cos 
q + ln(r4/r1) sin q}] …….(11) and     

H(X,O) = HAB +HBC+HCD+HDA

             = 2 g s [Z1ln (r1/r2) + Z2 ln (r3/r4) + R1{( 
Ø2 – Ø3 )   sin q + ln(r2/r3) cos q }+ R2{( Ø4 – Ø1) 
sin q +ln(r4/r1) cos q }]   ………(12)

where
r1

2 = (X+T)2  + Z1
2

r2
2 = (X– T)2  + Z1

2	

r3
2 =(X – T– Z2 – Z1 cot q)2 + Z2

2

r4
2 =(X + T– Z2 – Z1 cot q)2 + Z2

2

Ø1 =π/2+arctan(X+T)/Z1

Ø2 =π/2+arctan(X– T)/Z1		

Ø3 =π/2+arctan(X– T– Z2 – Z1 cot q)/ Z2  and

Ø4 =π/2+arctan(X+T– Z2 –  Z1 cot q)/ Z2   as shown 
in Fig. I. 

b) TRAPEZOIDAL PRISM

Let ABCD represents a vertical cross-section of a 
two-dimensional trapezoidal prism (Fig. II), whose 
faces AB and CD are horizontal and the faces BC 
and AD are inclined to the horizontal with an angle 

q. The origin of the coordinate system is chosen at 
O, which is the epicenter of a point bisecting AB. 
X-axis is along OP and Z-axis is positive downwards. 
Let AB = 2T. Let P(X,O) be any point at which we 
shall derive the equations for the gravity anomaly. 
The lines CB and DA are extrapolated to meet the 
X-axis at E and F respectively.  From Fig. II,

EP = X – T + Z1 cot q and hence,
	 R1=EP sin q = (X– T) sin q + Z1 cos q.

Similarly, FP = X + T – Z1 cot q, hence
	 R2=FP sin q = (X+T) sin q – Z1 cos q.

With the usual notation, we could immediately 
write down the gravitational attraction components 
of various faces as follows:

VAB = GAB^ = 2 g s Z1 (Ø2  – Ø1)
HAB = GAB|| = 2 g s Z1 ln (r1 / r2)
VBC = GBC^ cos q + GBC||  sin q
       = 2 g s R1 [ (Ø3 – Ø2) cos q + ln (r2 / r3) sin q]      

HBC = – GBC^ sin q + GBC|| cos q
    = 2 g s R1 [– (Ø3 – Ø2) sin q + ln (r2 / r3) cos q]    
VCD = – GCD^ 

= 2 g s Z2 (Ø4 –  Ø3)
HCD = – GCD|| = 2 g s Z2 ln (r3 / r4)
VDA = – GDA^ cos (2π – q) + GDA|| sin (2π – q)
      = 2 g s R2 [– (Ø1 – Ø4) cos q + ln (r4 / r1) sin q]   

and
HDA = – GDA^  sin (2π – q) – GDA|| cos (2π – q)
       = 2 g s R2 [ – (Ø1 –  Ø4) sin q – ln (r4 / r1) cos q] 

Figure II. Geometrical elements involved for a trapezoidal prism.
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Hence,
V(X,O) = VAB + VBC + VCD + VDA

        = 2 g s [ Z1 (Ø2 – Ø1) + Z2 (Ø4 – Ø3)  + R1 { 
(Ø3 – Ø2) cos q + ln (r2 / r3) sin q} + R2 {(Ø4 –  Ø1) 
cos q + ln (r4 / r1) sin q}]		      ……(13)

H(X,O) = HAB + HBC + HCD + HDA

     = 2 g s [ Z1 ln (r1 / r2)  + Z2 ln (r3 / r4)   + R1 
{ (Ø2 - Ø3) sin q + ln (r2 / r3)  cos q } – R2 { (Ø1 
–  Ø4) sin q + ln (r4 / r1) cos q}]	 ……..	  (14)

where r1 to r4 and Ø1 to Ø4 are the distances and 
angles as defined in Fig. II. If the distances are 
measured from the reference point (left end of the 
profile), then X should be replaced by X-D in the 
above equations; where D is the distance of the origin 
from the reference point.
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