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ABSTRACT
In this paper, we use fractal dimensional analysis to investigate the number of cyclonic disturbance 
that includes depressions, cyclonic storms and severe cyclonic storms over the North Indian Ocean 
(comprising  Bay of Bengal and Arabian Sea) using the Hurst exponent. We use the rescaled range 
(R/S) analysis to estimate the Hurst exponent for a period of 104 years (1901-2004) of cyclone 
data. The value of the Hurst exponent is corroborated by computing the correlogram of the 
concerned time series. The results are validated by Detrended Fluctuation Analysis (DFA). The 
distinct value of the Hurst exponent shows the persistence nature of the cyclonic disturbances 
over the North Indian Ocean.

INTRODUCTION 

The term “cyclone” is a generic term covering all the 
four atmospheric disturbances, namely, low pressure 
areas, depressions, deep depressions and cyclonic 
storms. There are some variations in the definition 
and names of their stages of storm’s intensity in 
one region to other. In the North Indian Ocean 
(comprising Bay of Bengal and Arabian Sea), these 
stages are divided into six categories depending upon 
the maximum sustained surface winds associated 
with the system. The new nomenclature introduces 
by Indian Meteorological Department (IMD) in 1998 
for description of cyclonic disturbances in the North 
Indian Ocean is given in table 1. 

About 80 tropical cyclones (with wind speeds 
≥ 34 knots) form in the world’s waters every year 
(McBride, 1995) of these about 6.5% develop in the 
Bay of Bengal and Arabian Sea (Neumann, 1993). 
The frequency of occurrence of tropical cyclone in 
the Bay of Bengal is about 4 times the frequency of 
those in the Arabian Sea. When compared with the 
frequency of occurrence of the tropical cyclone in the 
world’s water every year, the Bay of Bengal’s share 
comes out to be about 5.5%. The tropical cyclones 
forming   in the Bay of Bengal hit the coast of India 
every year, causing heavy loss of life and property. 
The globally-averaged annual variation of cyclone 
occurrence is only about 10%. For instance, in the 
Australian/Southwest Pacific region, the average 

number of tropical cyclones observed during 1950-
1986 was 14.8, with an annual variation of 40% 
(Evans, 1990). The quality of the tropical cyclone 
databases can be highly variable (Holland, 1981). 
Different definitions, techniques and observational 
approaches may produce errors and biases in these 
datasets which could have implications for the study 
of the natural variation of tropical cyclone activities 
and the detection of possible historical trends 
(Nicholls et al., 1998).

The very limited instrumental record makes 
extensive analyses of the natural variability of global 
tropical cyclone activities difficult in most of the 
tropical cyclone basins. Vulnerability to tropical 
cyclones is becoming more pronounced because 
the fastest population growth is in tropical coastal 
regions. Understanding tropical cyclone genesis, 
development and associated characteristic features 
has been a challenging subject in meteorology over 
the last several decades. In recent years, attempts 
to associate tropical cyclone trends with climate 
change resulting from greenhouse warming has led 
to additional attention being paid to tropical cyclone 
prediction (Emanuel, 1987, Evans, 1992, Lighthill et al., 
1994). 

Forecasting the tropical cyclonic disturbance is 
the most challenging goal in recent times with an 
era of global warming scenario. Exploring possible 
changes in tropical cyclone activity due to global 
warming is not only of theoretical but also of practical 
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importance. Before actually attempting to forecast 
the tropical cyclonic behaviour using the models, it 
becomes necessary to subject the data into certain 
preliminary analysis such as persistence, spectral, 
fractal dimensional, correlation dimensional analysis, 
etc. A trend analysis of normalized insured damage 
from natural disasters can potentially be useful for 
attempts at detecting whether there has been an 
increase in the frequency and/or intensity of natural 
hazards, whether caused by natural climate variability 
or anthropogenic climate change. 

Time series from many physical systems display 
some form of self similarity (Turcotte, 1997). In 
physics, as well as other scientific disciplines, the 
Hurst exponent is often considered as an indicator 
for correlations in time series analysis (Feder, 1998; 
Bansal and Dimri, 2005; Chamoli et al., 2007; Bansal 
et al., 2010). In this paper, the persistence analysis of 
the cyclonic behaviour over the North Indian Ocean 
is carried out by estimating the Hurst exponent and 
Detrended Fluctuation Analysis.

DATA 

A time series is a collection of observations of 
well-defined data items obtained through repeated 
measurements over time. Data collected irregularly 
or only once are not time series. An observed time 
series can be decomposed into three components: the 
trend (long term direction), the seasonal (systematic, 
calendar related movements) and the irregular 
(unsystematic, short term fluctuations). In this 
paper, we use 104 year cyclonic disturbance data 
for the period from 1901-2004, which includes 
depressions, cyclonic storms and severe cyclonic 
storms over the North Indian Ocean. Persistence 
analysis has been carried out for annual frequency 
of cyclonic disturbances, frequency of occurrence 
during southwest and northeast monsoon seasons.  
The corresponding frequencies of the occurrences 
of cyclonic disturbances are illustrated in fig. 1 (a, 
b and c). The studies are carried out in three parts 
since they would be helpful for both short and 
long term planners towards disaster mitigation. 
The statistical information regarding the annual, 
monthly/seasonal frequencies of tracks of cyclones 
and depressions over North Indian Ocean from 
1891-2011 are available in the official website of 
Regional Meteorological Centre, Chennai www.
rmcchennaieatlas.tn.nic.in.  

METHODOLOGY 

Hurst Exponent

The Hurst exponent is a parameter that quantifies 
the persistent or antipersistent (past trends to reverse 
in future) behaviour of a time series. It determines 
whether the given time series is completely random or 
has some long term memory. Ruzmaikin et al. (1994) 
examined whether or not the nonperiodic variations 
in solar activity are caused by a white-noise, random 
process. They evaluated the Hurst exponent for a 
time series of 14C data from 6000 BC to 1950 AD. 
They find a Hurst exponent of 0.8 indicating a high 
degree of persistence in the variations of solar activity. 
The reconstructed sunspot numbers for the past 
11360 years (Solanki et al., 2004) are found to be 
correlated with a Hurst exponent of ≈ 0.8 (Xapsos 
et al., 2009). Xapsos et al. (2009) also showed the 
evidence of 6000-year periodicity in the reconstructed 
sunspot numbers. The oscillating characters of the 
intensity of ENSO event (ENSO-event-index) can 
be well studied with the trends of Hurst parameter 
anomaly. H can be an alternate ENSO index (Huang 
and Morimoto, 2006). 

Rescaled Range Analysis (R/S):

The Hurst exponent is used as a measure of the long 
term memory of time series, i.e. the autocorrelation 
of the time series. To calculate the Hurst exponent, 
estimation of the dependence of the rescaled range 
on the time span n of observation is very important 
(Feder, 1998). A time series of full length n (104 
years) is divided into a number of shorter time series 
of length n = N, N/2, N/4... The average rescaled 
range is then calculated for each value of n. For a 
(partial) time series of length n, X1, X2...Xn, the 
rescaled range is calculated as follows: 

1. Calculate the mean: m. 
2. Create a mean-adjusted series: Yt =Xt – m for 

t= 1, 2.., n 
3. Calculate the cumulative deviate series Zt 
             t

Zt =  S  Yi   for   t = 1, 2, ....., n.
         i = 1

4. Compute the Range. 
5. Compute the standard deviation S. 
6. Calculate the rescaled range R(n) / S(n) and 

average over all the partial time series of length w.
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Hurst exponent is estimated by fitting the power 
law to the data.

In this present work, total number of data is 104. 
It divided into two sets of 52 each (N/2) then it is 
further divided into four sets of each 26 (N/4) and 
so on. The average rescaled range is then calculated 
for each value of n. Computing (R/S) (t0, w) for 
time lag w the rescaled range for the time lag w is 
finally written as the average of those values (Here 

R and S is calculated for each time series of n). It 
has been observed that the rescaled range (R/S) over 
a time window of width w varies as a power law: 
(R/S) w= k wH, where k is a constant and H is the 
Hurst exponent. To estimate the value of the Hurst 
exponent, R/S is plotted against w on log-log axes. 
The slope of the linear regression gives the value of 
the Hurst exponent. A value of 0 < H < 0.5 indicates 
a time series with negative autocorrelation (e.g. a 

Figure 1. Frequency of occurrence of Cyclonic disturbances (including depressions, cyclonic storms and severe 
cyclonic storms) for (a) annual, (b) southwest and (c) northeast monsoon over the North Indian Ocean for the 
period 1901-2004

(a)                                                                   

(b)

(c)
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decrease between values will probably be followed by 
an increase), and a value of 0.5 < H < 1 indicates 
a time series with positive autocorrelation (e.g. an 
increase between values will probably be followed 
by another increase). A value of H=0.5 indicates a 
true random walk, where it is equally likely that a 
decrease or an increase will follow from any particular 
value (e.g. the time series has no memory of previous 
values). 

The Hurst exponent is related to the fractal 
dimension D of the time series curve by the formula

D=2-H

If the fractal dimension D for the time series 
is 1.5, there is no correlation between amplitude 
changes corresponding to two successive time 
intervals. Therefore, no trend in amplitude can be 
discerned from the time series and hence the process is 
unpredictable. However, as fractal dimension decreases 
to 1, the process becomes more and more predictable 
as it exhibits “persistence” - namely the process shows 
a clear trend. As the fractal dimension increases from 
1.5 to 2, the process exhibits “anti-persistence”. 

DETRENDED FLUCTUATION ANALYSIS

DFA is a method for determining the statistical self-
affinity of a signal or a time series. The DFA 
technique was introduced to investigate long-range 
power-law correlations. The obtained exponent is 
similar to the Hurst exponent, except that DFA 

may also be applied to signals whose underlying 
statistics (such as mean and variance) or dynamics 
are non-stationary (changing with time). Due to 
the simplicity in implementation, the DFA is now 
becoming a widely used method in physics and 
engineering.  Sarkar and Barat (2005) investigated 
long time series of the rainfall records for all India 
and different regions of India and succeeded in finding 
evidence for power law distributions of the rainfall 
quantity. Peters et al. (2002) has presented power law 
behaviour in the distribution of rainfall over at least 
four decades.  Orun and Koçak (2009) used DFA to 
calculate scaling exponent of daily temperature data 
for 52 stations in Turkey. 

The DFA procedure is detailed below.

1. Calculate the cumulative sum Y(k) for the time 
series x1, X2,.....Xn of length n
                     k

Y(k)  =  S   [x(i) – <x>].
                   i = 1       

here < x > indicates the mean value of x (i)’s.

2. The profile Y (k) is divided into time windows 
of length w (n = N, N/2, N/4, ...)

3. The local trend for each segment is calculated by 
a least square fit of the data. The y coordinate 
of the fitted line is denoted by Y n (k). Then the 
Detrended time series for the segment duration 
‘n’ as Ys (k) =Y (k) -Yn (k). 

Table 1: 

             

Table – 1. Terminology used by Indian Meteorological Department (IMD) to classify the intensity of Tropical 
Cyclones over the North Indian Ocean (Ramesh Kumar and Sankar, 2010)

Category IMD classification
Wind speed

Knots Kmph (approx.)

1 Low Pressure area Less than 17 31

2 Depression 17 to 27 31 to 51

3 Deep depression 28 to 33 52 to 62

4 Cyclonic storm 34 to 47 63 to 87

5 Severe Cyclonic Storm 48 to 63 88 to 117

6 Very Severe Cyclonic storm 64 to 119 118 to 221

7 Super Cyclonic Storm 120 and above 222 and above
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4.   The root-mean square fluctuation of the original 
time series and the Detrended time series is 
calculated by
                       1      N

F(n)  = {(––) S  (Y(k) –Yn (k) ))2}1/2

                       N    k = 1

Repeat this calculation to all segment sizes (n= 104, 
w= 104, 52, 21, 13) to obtain a relationship between 
F (n) and w.  The double logarithmic plot of F (n) 
versus w is used to calculate the slope, which gives 
the scaling exponent β.  The scaling exponent for the 
cyclonic disturbances over the North Indian Ocean 
has been calculated using DFA technique.

Correlogram

In time series analysis, a correlogram is a plot of the 
sample autocorrelations for data values at varying 

time lags which is also known as an autocorrelation 
plot. The correlogram is a commonly used tool for 
checking randomness in a data set.  If random, such 
autocorrelations should be near zero for any and all 
time-lag separations. If non-random, then one or 
more of the autocorrelations will be significantly 
non-zero.  Autocorrelation refers to the correlation 
of a time series with its own past and future values. 
Autocorrelation is also sometimes called “lagged 
correlation” or “serial correlation”, which refers 
to the correlation between members of a series of 
numbers arranged in time. Positive autocorrelation 
might be considered a specific form of “persistence”, 
a tendency for a system to remain in the same state 
from one observation to the next. Geophysical time 
series are frequently auto correlated because of inertia 
or carryover processes in the physical system. For 
example, the slowly evolving and moving low pressure 

(a)                                                                   

(b)

                                                                 
(c)

Figure 2. The slope of the linear regression that gives the value of the Hurst exponent for the (a) annual, (b) 
southwest and (c) northeast monsoon frequency of cyclonic disturbances over the North Indian Ocean.
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systems in the atmosphere might impart persistence 
to daily rainfall. Autocorrelation complicates the 
application of statistical tests by reducing the number 
of independent observations. Autocorrelation can also 
complicate the identification of significant covariance 
or correlation between time series. Autocorrelation 
can be exploited for predictions: an auto correlated 
time series is predictable, probabilistically, because 
future values depend on current and past values. 

RESULT AND DISCUSSION

The Hurst exponent analysis has been employed on 
104 year data (from 1901-2004) of the frequency of 
cyclonic disturbances (comprising Bay of Bengal and 
Arabian Sea).  R/S is plotted against w on log-log axes 
to determine the Hurst exponent. Fig. 2 (a, b and 
c) shows the slopes of the linear regression for the 

annual frequency, the number of southwest monsoon 
and northeast monsoon cyclonic disturbances over 
the North Indian Ocean that gives the value of the 
Hurst exponent. The values are found to be 0.9, 0.8 
and 0.8 corresponding to the fractal dimension of 
1.1, 1.2 and 1.2. 

The validity of the above results has been 
examined by employing the DFA on the concerned 
time series data. Fig. 3 (a, b and c) gives the 
corresponding slopes of the linear regression that 
illustrates the DFA. The values are found to be 0.9, 
0.8 and 0.8. It is vivid from the above observations 
that the results for the concerned time series data are 
highly corroborate among them. We further validated 
the results by computing the correlogram of the time 
series. Fig. 4 (a, b and c) illustrates the autocorrelation 
plots for the three categories as mentioned above. The 
autocorrelations were computed to a maximum of 26 

Figure 3. The slope of the linear regression that gives the Detrended fluctuation Analysis for the (a) annual, (b) 
southwest and (c) northeast monsoon frequency of cyclonic disturbances over the North Indian Ocean

(a)                                                                   

(b)

                                                                 
(c)
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Figure 4. The autocorrelation plot for the (a) annual, (b) southwest and (c) northeast monsoon frequency of 
cyclonic disturbances over the North Indian Ocean

lags (n=104, n/4) (Chatfield, 2004). It can be readily 
seen that majority of the auto correlated values are 
positive in all the three cases. 

CONCLUSION

The result from Hurst exponent analysis and 
Detrended Fluctuation Analysis shows that the 
scaling values are very much greater than 0.5. The 
plots of the autocorrelation factor are the evidence for 
the non-randomness of the time series. Hence it can 
be summarized that the cyclonic disturbances over 
the North Indian Ocean shows a very high degree of 
persistent behaviour for the period 1901-2004. 
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