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INTRODUCTION

‘Simple shear’ is a homogeneous deformation, where 
a line bound by two parallel boundaries deforms into 
another straight line by shear of one or both the 
boundaries (Twiss and Moores 2007) (Fig. 1a). Frehner 
et al. (2011) pointed out problems in analogue models 
(to generate homogeneous deformation of such 
simple shears) and the analytical precautions that 
could minimize inhomogeneity. A simple shear, in 
which the top boundary shears upward relative to the 
bottom one is designated as ‘top-to-upward’ shear, 
whereas a downward movement ‘top-to-downward’ 
shear.

MODEL

The model considers a shear zone of a single lithology 
of an incompressible Newtonian rheology bound by 
two very long parallel dipping boundaries. A ‘top-to-
down-dip’ shear of the boundaries is considered under 
a pressure gradient that tends to extrude the rock. 
A component of gravity counteracts with this. The 
kinematics of such a shear zone is deduced based 
on the Poisson equation of flow (eqn 1). Thermal 
effects of the shear zone is neglected following Jain et 
al. (2005), Mukherjee (2007, 2011), Mukherjee and 
Koyi (2010 a,b), Mukherjee et al. (2012), Frehner et 
al. (2011), Mukherjee et al. (2011), Mukherjee and 
Mulchrone (2012), Mukherjee (2013 a,b), Koyi et 
al. (2013). 

The ‘Poisson equation’ flow of an incompressible 
Newtonian fluid in the z-direction through rigid 
boundary (inclined shear zone) is (Papanastasiou, et 
al 2000):

(∂2Uz/∂x2) + (∂2Uz/∂y2) =μ-1 [∂P/∂z - d g Sinθ]	 (1)

‘x’ and ‘y’: are perpendicular directions that lie on 

the cross-section of the shear zone; Uz- fluid along 
z-direction; ‘μ’- fluid viscosity; (∂P/∂x)- pressure 
gradient leading to extrusion; ‘d’: fluid density; ‘g’: 
gravitational acceleration; and ‘θ’: shear zone dip.

Considering only the YZ section, (∂2Uz/∂x2) = 
0. Therefore:

(∂2Uz/∂y2) =μ-1 [∂P/∂z - d g Sinθ]	 (2)

Integrating twice, considering the shear zone to 
be of 2y0 units thick, and at y = y0, Uz = - U1, and 
at y = - y0, Uz = U2 one can deduce the profile:

Uz = 0.5 μ-1 [∂P/∂z - d g Sinθ] (y2 – y0
2) + 0.5 {(U2 

– U1) - y y0
-1 (U1 + U2) }	       	 (3)

When d g Sinθ = ∂P/∂z, eqn (3) simplifies to:

Uz = 0.5 {(U2 – U1) - y y0
-1 (U1 + U2) }	 (4)

The ‘y’ ordinate of the vertex of the profile in eqn 
(3) is given by:

y1 = 0.5 y0
-1 μ (U1 + U2) (∂P/∂z – d g Sinθ) -1	 (5)

For y = 0.5 y0
-1 μ (U1 + U2) (∂P/∂z – d g Sinθ) -1   (6)

the vertex of the profile touches the upper boundary 
of the zone.

For y < 0.5 y0
-1 μ (U1 + U2) (∂P/∂z – d g Sinθ) -1   (7)

The vertex lies outside the shear zone.

When d g Sinθ = ∂P/∂z; and U1 < U2 < 0, the profile 
becomes (Fig. 2e):

Uz = 0.5 {(U1 - U2) + y y0
-1 (U1 + U2)}	 (8)
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Figure 1. a. Simple shear: linear profile; b. Poiseuille flow of Newtonian fluid, parabolic profile. Full arrows: flow 
direction.

Figure 2. Simple shear through an inclined channel under a top-to-down simple shear on the boundaries. Curve-2: 
flow due to gravity; Curve-1: flow by pressure gradient; Curve 4: combination of flows ‘2’ and ‘1’; Curve-3: flow 
due to shear of boundaries; Curve-5: the resultant flow profile. Full arrows ‘1’ and ‘2’: intensities of the respective 
flows; V: Vertex; P: Pivot. Dash line: demarcate sub-zones of opposite shear senses. Cases: a. Gravity component 
= pressure gradient. b. Gravity component < pressure gradient. c. Gravity component > pressure gradient. d. 
Gravity component > pressure gradient along with specific algebraic relation amongst geometric and rheologic 
parameter of the shear zone, velocity of shear at the boundaries and the pressure gradient (eqns 6 and 7 in the 
Appendix). e. gravity component = pressure gradient and both the boundaries shear downward with the top one 
at a higher velocity.
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CONCLUSIONS

When the gravity component of flow equals the 
pressure gradient, and boundaries shear, a linear 
profile forms (Fig. 2a, compare with Fig.1a; eqn 
4). A uniform shear sense develops. The point of 
intersection between the profile and the the Y-axis 
defines the static point ‘pivot’. Across a line passing 
through the pivot that parallels the boundary the 
direction of movement of points in the shear zone 
is opposite. While the upper sub-zone of the inclined 
shear zone moves down, the bottom sub-zone moves 
upwards.

When the gravity component of flow is weaker 
than the pressure gradient and the boundaries shear, 
the resultant parabolic profile tapers towards the up-
dip side with its vertex lying inside the lower half of 
the master shear zone (Fig. 2b; eqn 3). Across a line 
passing through the vertex that parallels the shear 
zone boundary demarcates two sub-zones of reverse 
shear sense. While the top-sub-zone shows a shear 
sense same as that applied on the boundaries, the 
bottom thinner sub-zone shows the reverse.

If the gravity component of flow is stronger than 
the pressure gradient while the boundaries shear, 
the resultant parabolic profile tapers downdip but 
its vertex lies inside the upper half of the master 
zone (Fig. 2c; eqn 3). In this case, the top sub-zone 
produces a shear reverse to that at boundaries, 
whereas the thicker sub-zone at its bottom shows 
the same sense.

When parabolic profile is the outcome of a simple 
shear, the vertex may lie on one of the boundaries of 
the inclined shear zone (curve ‘m’ in Fig. 2d), or even 
outside (curve ‘n’ in Fig. 2d). These could happen 
under special relation amongst the thickness and dip 
of the shear zone, density and viscosity of the rock 
mass, and shear velocity on the boundaries, and the 
pressure gradient that tends to extrude the rock (eqns 
6 and 7). A uniform shear forms.

When both the boundaries shear downwards, but the 
upper one with a higher velocity, the pivot lies outside 
the shear zone. A special case of pressure gradient 
equal to the gravity component is shown in Fig. 2e 
(eq. 8). Here also, a uniform shear sense develops.

An analytical model of simple shear is presented 
for a shear zone with parallel boundaries under a ‘top-
to-down-dip’ shear on an incompressible Newtonian 
fluid. A pressure gradient that tends to extrusion, 

counteracts with the effect of gravity that leads to 
flow down-dip. A linear profile forms only when 
the gravity and the pressure gradient components 
balance each other resulting in a uniform shear 
sense. If those two components are unequal and the 
boundaries shear, a parabolic profile forms where 
the vertex delineates the boundary between two sub-
zones of reverse shear. The pivot is the intersection 
between the velocity profile and line with respect to 
which the profile is constrained. The pivot remains 
static. Across a line passing through the pivot that 
parallels the boundary divides the master shear zone 
into an upper- and a lower sub-zone. A single shear 
sense develops inside the shear zone if under specific 
relation amongst the flow parameters the vertex 
of the flow profile touches one of the boundaries, 
or lie outside the master shear zone. The pivot 
lies outside the shear zone if both the boundaries 
move in the same direction and gravity component 
equals pressure gradient. To what extent the model 
holds true if viscous dissipation (Mukherjee and 
Mulchrone, 2013) needs to be studied.
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