J- Ind. Geophys. Union (2003)
Vol.7,No.1, pp.11-14

Parallelization Strategies for Seismic
Modeling Algorithms

Subrata Chakraborty, Sudhakar Yerneni, Suhas Phadke' and Dheeraj Bhardwaj?

Centre for Development of Advanced Computing, Pune University Campus, Pune — 411 007
"WesternGeco, Houston, TX USA
2Indian Institute of Technology, Delhi

ABSTRACT

Parallelism is the key to performance of seismic processing algorithms on any system manufactured today. This article
describes the various strategic issues related to the development of parallel acoustic and elastic wave modeling
algorithms. It also gives an insight into MPI (Massage Passing Interface) implementation on a parallel computer.
Performance analysis is carried out to find the best strategies to develop scalable parallel algorithms for large problem

size on large number of processors.

INTRODUCTION

Seismic Modeling is an area of significant research in Industry.
Wave equation modeling is useful for understanding complex
imaging problems such as shadow zones, steep dips, gas clouds,
artifacts etc., for processing and algorithm testing, and for AVO
analysis. Thus, the main purpose of forward modeling is to
validate the geological model by comparing the synthetic data
with the field data.

In the last two decades the power of computers has increased
approximately by 500 times and network speed has increased to
several thousand times. But on the other side applications like
Seismic modeling, need computational resources far greater than
a present sequential computer can provide. Parallel processing
has proven to be a viable solution to improve performance,
which uses the power of multiple computers connected together
by high-speed network.

Forward modeling, where the synthetic data is generated
for a given earth’s model, is key step in process of seismic
inversion, where one tries to estimate the physical properties of
the earth. 80 to 90 % of the computing time in an inversion
algorithm is spent on generating synthetic data. Efficient parallel
algorithms are therefore essential.

In this paper, we have discussed some of the strategies for
solving efficiently the 3D acoustic and elastic wave equations for
seismic modeling on parallel computers.

MATHEMATICALPROBLEM

The basic problem in the theoretical seismology is to determine
the wave response of a given model to the excitation of an
impulse source by solving the wave equations under some
simplifications. In scalar approximation, the acoustic wave
equation may be solved to evaluate the waveform but only
compressional waves are considered. A more complete approach
is to study the vector displacement field using full elastic wave
equation for modeling both, compressional and shear waves.
In this formulation the mode conversions are automatically
accounted for.

ELASTIC AND ACOUSTIC WAVE MODELING

The mathematical model for elastic wave propagation in
heterogeneous media consists of coupled second order partial
differential equations governing motions in x-, y- and z-
directions. Instead of solving second-order coupled partial
differential equations (PDE), we formulate them as a first order
hyperbolic system (Virieux 1986; Dai, Vafidis & Kanasewich
1996). First order hyperbolic PDE formulation does not contain
any derivatives of physical parameters (Phadke, Bhardwaj &
Yerneni 2000). Thus, we need not calculate the gradients of the
physical parameters that may cause singularity in the numerical
solution due to sharp changes in the subsurface properties.

When we move from elastic to acoustic media, the value of
U becomes zero. By substituting 1= 0 in the elastic formulation,
we get a first order system of hyperbolic partial differential
equations which governs the acoustic wave propagation
(Phadke, Bhardwaj & Yerneni 2000).

The mathematical equations for acoustic wave propagation
in 3D homogeneous media can be written as a first order
hyperbolic system of partial differential equations:

Z=AZ+B—+C= (1)
ot X oy oz
(PO OO0 A 003 OO O A OJ OO 00 AO
0 04 0 0 0 O O
P:HJDA:EP 00 ODB:DO 00 ODC=D0 00 OD
EIIIS EO 00 og Bo‘l 00 og EO 00 og
g ©HO O 0 OF HO 0 0 0§ f* 0 0 0f

For solving above partial differential equations, we use finite
difference methods.

NUMERICAL SULUTION

Finite difference methods have been preferred for determining
the numerical solution of wave equations as they not only
account for direct waves, primary reflected waves and multiply
reflected waves, but also for head waves, diffracted waves, critically
refracted waves observed in ray theoretic shadow zones.

11



Subrata Chakraborty etal.

Explicit finite difference methods are most common for
solving hyperbolic system of equations. We use the method of
splitting in time. An explicit method based on MacCormack
scheme is used for numerical solution (Mitchell & Griffiths
1981).

BOUNDARY CONDITIONS

Since a digital computer has finite memory capabilities, we have
to restrict the model size to a fixed number of grid points. This
introduces artificial boundaries at the edges of the model. In
reality the earth is infinite and therefore all the energy impinging
on these boundaries must be absorbed. For the finite difference
scheme presented here a sponge boundary condition as
described by Sochacki et al. 1987, is used for attenuating the
energy impinging on the left, right, front, back and bottom
edges of the model. To implement sponge boundary condition
extra grid points are added to gradually attenuate the energy.
The free-surface condition is applied to the top boundary.

ACCURACY, STABILITY AND GRID DISPERSION

The MacCormack method is fourth order accurate in space and
second order in time. The model discretization is based upon
regular grid. Keeping the grid spacing smaller than one tenth of
the shortest wavelength minimizes grid dispersion.

The McCormack finite difference method is stable if

At < min(Ax, Ay, Az) (2)

NEY

where (V=K/p)and V__isthe maximum wave velocity in the
medium..

In order to avoid grid dispersion, we have to discretize the
model with fine grid spacing. Such discretizations substantially
increase the computational size of the model in terms of the
number of grid points in each spatial direction and therefore
need large computer memory for computation and storage. For
explicit schemes, the stability and grid dispersion conditions
restrict the size of the time step, which is normally very small.
Therefore, the computational time required for calculations
become very large. Supercomputers based on vector or parallel
architecture are generally used for this purpose.

PARALLEL ALGORITHMS

The most important part of parallel programming is to map
out a problem on a multiprocessor environment. The problem
must be broken down into a set of tasks that can be solved
concurrently. The choice of an approach to the problem
decomposition depends on the computational scheme. For the
MacCormack scheme, one can observe that the calculation of
the wavefield at a grid point at an advanced time level involves
the knowledge of the wavefield at nine grid points of the current

12

time level. Therefore, if we use a domain decomposition scheme
for solving this problem second order neighbors will be involved
in communication.

DOMAIN DECOMPOSITION

The parallel implementation of the algorithm is based on
domain decomposition. Domain decomposition involves
assigning subdomains of the computational domain to
different processors and solving the equations for each
subdomain concurrently. The problem domain isa cuboid and
can be partitioned in three ways viz., stripe, hybrid stripe and

checkerboard.

STRIPED PARTITIONING

In the striped partitioning of the 3D domain, the domain is
divided into horizontal or vertical planes, and each processor is
assigned one such plane. Striped partition can be done in three
ways as shown in Fig. 1.

P | P, Pl Po

Figure 1. (a) Partition in z- direction, (b) partition in x- direction
and (c) partition in y-direction

If we chose partitioning in z - direction then x-y planes
have to be distributed among processors, if we chose partition
in x- direction, then y-z planes have to be distributed among
processors and if we chose partition in y direction x-z planes
have to be distributed among processors. For load balancing
we divide the domain in equal size of the pizza boxes,
depending upon the number of available processors.

HYBRID STRIPE PARTITIONING

In hybrid stripe partitioning, partition is done using combina-
tion of two of the striped partitioning as shown in Fig.2.

Figure 2. (2) Partitioning in z- and x- directions (b) partitioning
in z- and y- directions (c) partitioning in x- and y- directions.

CHECKERBOARD PARTITIONING

In checkerboard partitioning, domain is divided in all three
directions creating smaller subdomains. In uniform checkerboard
partitioning, all sudomains are of the same size. These



subdomains have to be distributed among processors and no
processor gets the complete plane (Fig3).

y Yoy

X

4

Figure 3. Checkerboard partitioning of the Domain.
INTERPROCESSOR COMMUNICATION

In the stripe partitioning as shown in Fig.1, each individual
processor calculates the wavefield at each grid point in the
corresponding subdomain at time k + 1, using wavefield values
at previous time steps at the same grid point and its adjacent
neighbors (depends on finite difference scheme used). The grid
points can be updated using finite difference formula,
simultaneously in all the subdomains except the grid points on
the boundary that require information from the neighboring

o &
] PP
o

(a

(c

Figure 4. Communication between two adjacent tasks in
(a) stripe, (b) Hybrid stripe and (c) checkerboard partitioning.

In order to calculate the wavefield at the grid points on the
subdomain, at each time step, the required boundary grid points
should be interchanged between the processors. Fig.4(a), shows
the communication pattern in the stripe partitioning. For
interchange of grid point, we attach an extra buffer layer (depth
depends on the finite difference scheme) with the subdomains.
The grid point(s) in the darker zone in the subdomain goes to
the lighter zone (grey zone) of the other processor. Thus, in
this case the two-way communication is in one direction only.
This communication is known as ghost point communication.

In the case of hybrid stripe partitioning, ghost point
communication is in two directions i.e. each processor should
exchange boundary grid points with its four neighboring
processors as shown in the Fig.4(b). While in the case of
checkerboard partitioning the ghost point communication is in

Parallelization Strategies for Seismic Modeling Algorithms

all three directions, i.e. each processor should exchange the
boundary grid points with its six neighbors as shown in Fig.4(c).

ALGORITHM

In summary, the parallel algorithm for implementation looks
as follows:

BEGIN
Setup data structures, variables and constants
Read velocity model
Setup the domain decomposition
Send the decomposed subdomain with corresponding
velocity to different processors
FORALL processors simultaneously DO
FOR every time step DO
FOR every grid point DO
- Evaluated wavefield
END
-Interchange border grid points with each adjacent
layer(s).
END
- Gather wavefield from every processor

END

PARALLELIMPLEMENTATION

Parallel implementations are being aggressively pursued on two
fronts. The first is message-passing approach of cluster
computing. The current leading technology for this is via Message
Passing Interface, commonly know as MPI (Gropp, Lusk &
skjellum 1999). The second philosophy is parallelism via shared
memory loop level parallelism and available as a library called
OpenMP (Chandra et al. 2000) for most of the shared memory
(Symmetric Multi Processors) systems.

We have used MPI for the parallel implementation on a
cluster of workstations. To setup the domain decomposition,
we have used Cartesian topology approach of MPL This helps
in identifying the neighbors for the inter-processor ghost point
exchange step for wavefield calculations. For ghost point exchange
we have used MPI Send-Receive function. For all other
parameters distributions usual MPI send, receive and broadcast
functions have been used.

PERFORMANCE ANALYSIS

We have performed the benchmark tests of the parallel algorithm
for a problem size 400 x 400 x 400 on PARAM 10000 system
which a cluster of SUN E-450 workstations.

We have used three types of partitioning for the domain
decomposition and have experimented with all the three types.
For implementation point of view all three types of partitioning
play an important role on the basis of memory access pattern
and degree of concurrency. Theoretically, checkerboard
partitioning has the best memory access pattern as the partitioned
data can reside in the first level of the cache available. In the case

13



Subrata Chakraborty etal.

of stripe and hybrid stripe partitioning for access of data from
memory may require swapping between first and second levels
of cache, which is an expensive operation. Hybrid stripe
partitioning has better access patter as compared to stripe
partitioning. A bar chart of execution time verses number of
processors for 3D acoustic wave modeling shown in Fig.5.

Q5000 -+
.§4 000 H Stripe
'E EHybrid-Stripe
©3000 TTCheckerboard
s
§2 000 41
I.I>j1 000 -1

0 pu =

8 16 32 64

Number of Processors

Figure 5. Bar chart for Stripe, Hybrid-Stripe and Checkerboard
partitioning for 3-D acoustic wave modeling for model size
400x400x400.

When analyzing performance of a parallel algorithm we
find that speedup is a function of problem size too. For a given
problem size, as we increase the number of processors,
communication to computation ratio increases. If we keep the
number of processors constant, and increase the size of the
problem, communication to computation ratio decreases.

SCALED SPEEDUP

The aim of the scaled speedup is to study the behavior of the
parallel code when the amount of data per processor 1s kept
constant while the number of processors is increased. In
particular, this shows how the code would behave on huge
problems when large numbers of processors are used
(Gustafson, Montry & Benner 1988).

We have carried out experiments on two local problem sizes:
(a) 64x64x64 grid points per processor and (b) 128x128x128
grid points per processor. In our experiment we have scaled the
problem in all three directions. In this particular study, we define
the scaled speedup as

rT
SP =

P
where, T, isthe elapsed timeto solve problem on 2 processorsand
T, isthe elapsed time to solve on p processors. P isthe number of
processors.

DISCUSSION & CONCLUSIONS

The codes for these parallel implementations have been written
using MPI message passing libraries. We have discussed a numerical
example for showing the accuracy of the results. Performance
analysis shows that for the domain decomposition, checkerboard

partitioning gives the best performance as it has suitable memory
access pattern for such problems. Checkerboard partitioning has
advantage of achieving high degree of concurrency over other
ways of partitioning, Table 1 (scaled speedup analysis), shows that
we can achieve a good price performance ratio for smaller size
problems on less number of processors and for large size of the
problems we have to use large number of processors. Table 1,
also predicts that very large size of the problem will scale well for
very large number of processors.

Table 1: Scaled speedups for (a) 64x64x64 and (b) 128x128x128
grid point per processor

Number of Scaled speedup Scaled speedup
Processors 64x64x64 grid 128x128x128 grid
points per processor | points per processor

2x2x1=4 359 39
2x2x2=8 6.61 7.6
4x2x2=16 12.95 15.2
4x4x2=32 18.13 24.6

4x4x4 =64 24.45 35.8

ACKNOWLEDGEMENTS

Authors wish to thank C-DAC for providing computational
facility on PARAM 10000 and permission to publish this work.

REFERENCES

Chandra, R., Dagum, L. Kohr, D. Maydan, D, McDonald,]. &
Menon, R., 2000, Parallel Programming in OpenMP,
Morgan Kaufmann Publishers.

Dai, N, Vafidis, A. & Kanasewich, E. R., 1996, Seismic migration
and absorbing boundaries with a one way wave system
for heterogeneous media, Geophys. Prosp., 44, 719-739.

Gropp, W., Lusk, E. & Skjellum, A., 1999, Using MPI - 2nd
Edition, MIT press.

Gustafson, J., Montry, G. & Benner, R., 1988, Development of
parallel methods for a 1024-processor hypercube, SIAM
J- Scientific Computing, 9 (4), 609-638.

Mitchell, A.R. & Griffiths, D. F., 1981, The finite difference method
in partial differential equations: John Wiley & Sons Inc.

Phadke, S., Bhardwaj, D. & Yerneni, S., 2000, Marine synthetic
seismograms using elastic wave equation. Expanded
Abstract, SEG 70th Annual International Meeting.

Sochacki, J., Kubichek, R., George, J., Fletcher, W. R. & Smithson,
S., 1987, Absorbing boundary conditions and surface
waves: Geophysics, 52, 60-71

Virieux, J.,1986. P-SV wave propagation in heterogeneous
media: velocity stress finite difference method: Geophysics,
51, 889-90.

(Accepted 2002 November, 20. In original form 2002 August 27)

14



