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ABSTRACT

The Erlang distribution is derived as a model for ocean wave periods from the estimation of the functional form of
the various mean wave periods. The relative and mean rms__ values of computed and theoretical mean wave periods
are not more than 9% and 5% respectively. Further various characteristics of this distribution are derived to obtain

some useful wave period estimations.

INTRODUCTION

While there is an abundance of literature on distributions of
wave heights, there is a paucity on the distribution of wave
periods. A few studies have been reported on the short-term
distributions of wave periods (Longuet-Higgins,1975; Dattatri,
Raman & Jothi Shankar 1979; Deo & Narasimhan 1979). Putz
(1952) was the first to suggest that the distribution of wave
periods, follow a Gamma-type distribution. Bretschneider
(1959) suggested a model for simulating wave period
distribution. Rayleigh model is also applied as an ocean wave
period model (Baba & Harish 1985). By observing the
distribution of visually estimated wave periods (NPOL 1978;
NIO 1982) for Arabian Sea and Bay of Bengal for a period of 10
yearsand 5 years respectively, the exponential model along with
the above given models were used to represent the wave periods
and it was found that the Gamma distribution was superior
among the other competing models (Muraleedharan,
Unnikrishnan Nair & Kurup 1993). Hence the distributions of
the recorded shallow water wave period data analysed by the
zero up-crossing method (T ) have been simulated by Gamma
distribution model and the goodness of fit was tested using
X>-test at 0.02 level of significance. (Unnikrishnan Nair,
Muraleedharan & Kurup 2002). Recorded wave data obtained
from wave records off Valiathura, Kerala coast using pneumatic
wave recorder charts at 0900hrs, 1200hrs and 1500hrs for January
1981 (depth of recording,5.5m) carried out by Centre for Earth
Science Studies, Thiruvananthapuram, Kerala are used. Wave
recording was carried out for 10 days for about 15 minutes
(CESS 1984). The model fits in 92.86% cases after appropriate
grouping of the data. The wave data recorded at 0900hrs, 1200hrs
and 1500hrs are treated as separate sets of data. As the
distribution function of Gamma model derived by power series
expansion is complicated, the predictive formulae for various
wave period parameters are not analytically tractable to apply for
practical purposes. Accordingly the shape parameter of the
Gamma model is approximated to the nearest integer to arrive
at Erlang distribution. This model is employed to derive various

prediction formulae for estimating different wave period
parameters theoretically. A modified Gamma and Erlang models
are suggested for redefined significant wave periods by the
method of characteristic functions and for predicting various
statistical parameters of redefined significant wave periods. The
various predicted parameters are comparable with the computed
ones from the point of view of RMS__ values.

MATERIALS AND METHODS

One approach to determining the distribution of wave periods
isto derive it as the marginal distribution of the joint distribution
of wave heights and periods. By this method Longuet-Higgins
(1975) obtained the model
{©)=(1+c/4). (1/2c){1+(1-1/1)2.1/2}% 1 > 0,

where ‘c’ is the spectral width and t="T/T with T representing
the periodand T its mean. An inherent weakness of the model
is that the mean of the distribution is infinite and variance does
notexist. Arhan, Cavanie & Ezraty (1976) and Kwon & Deguchi
(1994) also provide a joint distribution of wave height and
period. The period distributions are sensitive to the shape of
the wave spectrum and further estimation of wave period
parameters often turns out to be difficult for these models. A
second and conventional approach is to fit known probability
distributions based on the physical characteristics of the wave
periods.

In the present paper we explore the possibility of finding
the distributions of wave periods by modeling the function
m(t) =E(T/T >t) on the basis of the observations on T. Since
m(t) determines the distribution of T uniquely, it is enough to
find the appropriate functional form of m(t) consistent with
the data. Based on such a model we examine some of the
parameters such as mean, mean of maximum wave period,
most frequent maximum wave period, extreme wave periods
and analysis of return periods.

The concept of significant wave height as introduced by
Sverdrup & Munk (1947) is the mean of the highest one-third
of waves present in a sea. This definition is unrealistic since the
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number of waves ‘n’ is unspecified (Kinsman 1965). Further, it
presents difficulties in finding the distribution of significant
wave. Accordingly we modify the definition of significant wave
as the average of one-third highest zero up-crossing waves of a
constant number of consecutive waves(n) in a wave record. The
distribution of redefined significant wave height in the new
formulation is derived(Muraleedharan, Unnikrishnan Nair &
Kurup 1999) and also the redefined significant wave period(n=6)
(Unnikrishnan Nair, Muraleedharan & Kurup 2002) and it is
shown that the modified definition compare favourably with
the existing ones.

While designing floating marine systems it is of importance
to know wave heights having periods that are close to the natural
periods of the system in areas where it is operated. We study the
mean wave period, mean maximum wave period, most frequent
maximum wave period, significant wave period, extreme wave
periods, return period of an extreme wave period and also the
probability of a wave period of designated size is realized in a
specified period of time for a given return period.

The probability that the period T exceeds a given value t is

Ft)=P(T>t)=1-F(t).
Where F(t) is the distribution function of T. The average of
such periods larger than tis m(t) =E(T | T>1)=

= (I/F@). " xf(x).dx
=(-1/F@)). J” x[dF(x)/dx].dx
=t+ (I/F@). J° F®)dx 1)

It is known that the knowledge of m(t) will enable one to
determine the distribution of “T” through the relationship

F)=exp[- T m’®)/ (mx)x).Jdx @
where m'(x) is the derivative of m(x)

Thus modeling the wave periods can be accomplished
through the function m(t), provided sufficiently accurate
information on the functional form of m(t) can be established
from the data. This aspect is discussed in the next section.

Significant Wave Period

If the sample represents zero up-crossing consecutive waves in
arecord arranged in ascending order, the significant wave period
s T =E (T, 5+ Ty +eoeeees + T, where (2n/3) is

chosen as the(ﬂ/r}s)gest intzfrzlge)r value, if (2n/3) 1s not an integer. It

is well known that the distribution of T' , is specified by the

density

h(t)=[n!/((r-1)!(0-r))].L F(t) [ 1-F () I £(z),
r=1,2,3,...,n )

where F()) and {() are the distribution and density function of
T. From (3), theoretical expressions for T can be computed,
once the distribution of T is identified.
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Erlang distribution as a wave period model

The Gamma distribution function is given by
E(t)=[A%/ T (@)] Jexp-(At).t*".dt;t, A, a0 >0

Power series expansion for this incomplete Gamma
function is

F(t)=[1/(a.T (a))].(A\t)%exp-(At).[1+ At/ (a + 1)) + ((Ar)*/
(a+D)(O+2)+.......]

Since the prediction formulae for the various wave period
parameters derived from these are complicated, a simplifying
assumption is made by treating o as a positive integer resulting
in the Erlang distribution with density function

f(t) =A% 1 e /(o-1)!, t > 0,A>0 (4)

as amodel for wave periods. For this distribution, the expression

for F(t) and

F(t) can be obtained in closed form. In fact

Q
O

F@®=Y (Av.eM/il,t20,

1=0

and [ F().dx=A15. 5 (\e™/j! ©)
i=0 j=0
Hence from equation (5)
m) =t +[ N3, 5 ML /i ©)
i=0 j=0 i=0

To be able to use (6) in a practical problem one needs estimates
of Aand a
Initial values of A and O can be obtained from the expressions

N ~
A=%/sanda =x/¢

where x and §? are respectively the mean and variance of the

sample values. The nearest integer value of X/s* is chosen as

the point estimates of o

The distributions of the various average wave periods
derived from expression (6) are compared with the computed
values for the recorded wave data. A few typical examples are
given in fig.1(2-d). Two indicators of the overall accuracy of the
expression (6) are computed,(Table.1)viz.the root-mean-square
relative error and the relative bias (mean error). Since there is
fairly good empirical support, from expression (6), it is inferred
that the Erlang distribution (4) adequately represents the
observations.

Thus the proposal of Erlang as an ocean wave period model
from empirical and Putz’s (1952) appears to have empirical and
logical foundation.

Parametric relations could be derived from this
expression for predicting various characteristics of wave period
as follows.



Mean Wave Period

The mean wave period T is given by the expectation of t as

T=E(T)=J~t{(t).dt = o/A and variance as 6°= a/\’

Mean Maximum Wave Period

Let T be the random variable representing a maximum wave
period which is assumed to be continuous and non-negative
with distribution function F(t) and probability density function
f(t). Then T__ has distribution function

G()=[F@® T ,n-sample size @)
and hence the maximum wave period has density
g()=G () =n.F()'.1() 8)

The mean value of the maximum wave period is
E(T,..)=J"tn[F@) " £ dt
=n.E[tF{) o)

where the average is taken over the distribution of T. It is found
to be

-1

T, = 20/AHY/Q@-D)] 3 (@+)/@+iil) , n=2

i=0

Most Frequent Maximum Wave Period

On the other hand the most probable maximum period is the
mode of (8) obtained as the solution of the equation g’(t) =0
or

(n-1) [(fOT + F@).£©)=0 (10)

It is the solution of the equation
A+ S exp-AO[(@+i-D)A)-2)1/il] = o1, n=2 (11)
i-0

The Most Frequent Maximum Wave Period predicted using
(11) are found to be closer to the observed values (Unnikrishnan
Nair, Muraleedharan & Kurup 2002).

Extreme Wave Period

When the observed wave periods is a random variable following
Erlang law, the distribution of the maximum wave periods is
specified by G(t). Therefore the probability that we get a wave
period exceeding T__is 1-G(t)=P(T, >1)

In a series of observations on maximum periods, the
probability that the r observation is the first that exceed T, is
[1-G(©)][G()]' and E(r) = (1-G)". E(n) is infact the average
number of periods between two exceedances and therefore
represents the average time interval with which exceedances
occur(Return period-R ) ie. The extreme wave period is the
solution of the expression

Erlang Distribution Model for Ocean Wave Periods

15 (N exp-M/il = (1-1/R )N for ¢ (12)

i=0

Analysis of Return Periods

The re-occurrence of an extreme wave period (t__)is derived
from (12) as

R ~{1{13 (A exp-(h)/ill}- (13)

where N is the time of observations.

Another question that is of interest at this juncture is
given a period of time R (in days or years), what is the
probability thatlevel t__isnever realized in m period of
time(in days or years,m <R ). For this we assume that P is

Tablel. The relative and mean rms__ values for computed and
theoretical distributions of mean values.26 tests

error

1 0.064 -0.014
2 0.056 0.028
3 0.086 0.050
4 0.045 -0.036
5 0.036 0.011
6 0.035 -0.028
7 0.033 0.026
8 0.021 -0.005
9 0.046 -0.019
10 0.045 -0.020
11 0.048 0.024
12 0.046 0.002
13 0.018 0.005
14 0.034 0.005
15 0.085 0.006
16 0.030 0.008
17 0.025 0.008
18 0.043 -0.020
19 0.047 -0.006
20 0.015 0.006
21 0.054 -0.027
2 0.037 -0.022
23 0.034 0.027
24 0.036 0.030
25 0.043 -0.022
26 0.041 0.028

A few typical examples [Figs 1(a-d)] showing the goodness of
fit between the computed and the theoretical values of mean
wave periods are given in Table 2.
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Table2. Typical values of computed and theoretical mean wave

periods.
E(T T >v)
t Theoretical Computed
Figd) 3 1091 1059
4 1091 10.84
5 10.92 10.92
6 10.96 10.99
7 11.10 11.15
8 11.37 11.39
9 11.80 11.71
10 12.36 12.30
11 13.04 12.97
12 13.79 14.00
13 14.61 14.56
14 15.47 15.00
Fig(b) 5 1335 13.08
6 13.36 13.29
7 13.38 13.49
8 13.45 13.58
9 13.62 13.73
10 1391 14.15
11 14.32 14.47
12 14.87 14.81
13 15.51 15.44
14 16.23 15.92
15 17.01 17.20
16 17.83 17.50
17 18.69 18.00
Fig() 4 12.40 11.94
5 12.42 12.04
6 12.47 12.22
7 12.60 12.46
8 12.84 12.75
9 13.21 13.24
10 13.69 14.07
11 14.27 14.88
12 14.94 15.27
13 15.68 16.09
14 16.46 16.88
15 17.29 17.73
16 18.14 18.11
17 19.02 19.00
18 19.92 19.67
19 20.84 21.00
Figd) 3 1167 11.15
4 11.69 11.38
5 11.76 12.05
6 11.92 12.16
7 12.19 12.56
8 12.59 12.74
9 13.09 12.90
10 13.69 13.39
11 14.37 13.72
12 15.11 14.95
13 15.89 15.93
14 16.71 16.70
15 17.57 17.13
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Table.3. Computed and predicted wave period statistics

Wave period 0900hrs 1200hrs
Statistics(s) ¢ P ¢ P
T 114 11.6 11.8 11.8
T 137 132 143 133
T, 14.0 14.9 143 14.7
T, 132 126 150 127
T 17.5 19.3 19.7 18.6

the probability that alevel larger thant__ will not be realized
in consecutive time m is

P=(1-G)® = {113, (W) exp- ()AL (14)

The probability of realizing a wave period of ‘t’ during any
one of the m time is 1-p =q.

DISCUSSION AND RESULTS

The computer programs for these expressions are given as
appendix with examples and the empirical validations of these
for zero up-crossing wave period data have been
made(Unnikrishnan Nair, Muraleedharan & Kurup 2002) which
are reproduced in Table.3

Putz (1952) had obtained a gamma-type distribution
function to represent wave periods. Baba & Harish (1985)
suggested that the swell wave periods fit closer to the
Bretschneider distribution given by

P(T)= 2.7 (T°/ T*.exp[-0.675(T/T)]

T is the mean wave period. This distribution explains
the wave periods satisfactorily when dominated by swells
(Baba & Harish 1985). The strong base of this function is
on the narrow band of the wave spectrum, which can be
observed in the swell dominated sea state. They also suggest

that the sea wave periods fit closer to the Rayleigh
distribution of the form

P(T)= exp(-TV4(T/T))

It is to be noted that of the various theoretical models
available for modeling ocean wave periods are of empirical or
semi-empirical origin. Hence the validity of these models are
highly data based.

The computer programs for these expressions are given as
appendix with examples.

It is to be noted that the mean maximum wave period(T_ )
and most frequent maximum wave period(T_ ) are less
compared to the significant wave period(T ). These are actually

Erlang Distribution Model for Ocean Wave Periods

1500hrs
P RelativeRMS__ Mean
114 11.7 0.019 0.017
14.2 135 0.054 -0.051
14.4 15.2 0.051 0.048
13.0 12.7 0.101 0.078
19.0 20.1 0.076 0.033

to be computed from the distribution of the maximum wave
periods. Here it is computed from the individual zero up-
crossing wave periods as a testing procedure for their parametric
expressions and computer programs developed.

The conventional Significant wave is the one-third average
of the highest waves in a wave record. Here various averages of
the highest waves are computed from the data and simulated
theoretically from the expression derived for 26 data sets. Since
the maximum relative and mean rms error of the computed
and theoretical values are of the order of less than 9% and 5%,
it can be assumed that the functional form derived for various
mean wave periods (6) is adequate. Thus from the distribution
of the various mean wave periods we arrive at F(t) by (2), ie.,
the Erlang is the model for conventional significant wave period
distribution.

It is to be noted that the visual observations on mean wave
periods are the conventional significant wave periods (NPOL
1978) and they are not as accurate as the visually estimated
conventional significant wave heights. However, Muraleedharan,
Unnikrishnan Nair & Kurup (1993) observed that the visually
estimated mean wave period for sea and swell dominated state
follow Gamma distribution. The data grids comprised of both
southwest and northeast monsoon seasons off Valiathura and
Mangalore, southwest coast of India. The present theoretical
finding of the Erlang model as a wave period model reaffirms
the earlier empirical support.

CONCLUSIONS

An expression has been derived for various mean zero up-
crossing wave periods using Erlang distribution model. The
comparability of the computed and the theoretically predicted
mean wave period distributions has been tested using relative
rms__and mean rms__ . The errors are not more than 9% and
5% respectively. From the empirical support for the theoretically
simulated mean wave periods, we arrive at the model for
conventional significant wave period as an Erlang distribution.
Parametric relations are derived from the model for predicting
various wave period statistics.
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Erlang model is a special case of Gamma when its shape
parameter is an integer. By suggesting the Erlang distribution
model and prediction formulae derived therefrom the
complexity arising from considering Gamma model is eased.
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APPENDIX
1
C PROGRAMFOR COMPUTING VARIOUSMEAN WAVE PERIODS
C THEORETICALLY, m(t)=E(T\T >1)
C INPUTPARAMETERS
C ALPHA-LPHA,LAMDA-AMDA, TI-PERIOD.
C OUTPUTPARAMETERS
C m()
READ(*,Y)LPHA,AMDA
2READ(*,*TI
WRITE(*,5)TI
5 FORMAT(///AX,'t="F5.2)
SUM=0
SUM1=0
I=LPHA-1
A=AMDA*TI
IF(LEQ.0) GO TO 20
DO10II=0,1
AJ=1
AM=1
KK=II
DO50LL=1KK
AM=AM*A/LL
50 CONTINUE
SUM1=SUM1+AM
DO151II=0,KK
JJJ =11
DO30II = 1,]]]
AJ=AJ*A/II
30 CONTINUE
SUM=SUM +A]
AJ=1
15 CONTINUE
10 CONTINUE
SUM1=SUM1
SUM=SUM/SUM1/AMDA
SUM2=TI+SUM
WRITE(*,100)SUM2
100 FORMAT(///,4X,’m(t) =",F5.2)
GOTO2
20SUM2=TI+1/AMDA
WRITE(*,110)SUM2
110 FORMAT(///,4X,’m(t)=",F5.2)
GOTO2
STOP
END

Erlang Distribution Model for Ocean Wave Periods

65



N.Unnikrishnan Nair, G.Muraleedharan and P.G.Kurup

C PROGRAMFOR COMPUTING MEAN MAXIMUM
C WAVE PERIOD(FROM ERLANG DISTRIBUTION)
2 READ(*,*)LPHA,AMDA
WRITE(*,5LPHA,AMDA
5 FORMAT(///4X,; ALPHA ="13,3X,; LAMDA =" F6.4)
E=0.0

M=LPHA-1
B=2.0*LPHA/AMDA
AN=LPHA
A=(AN)/2.0**AN
DO10I=1,M
AN=AN+1
A=AN*A/2.0/1
E=E+A

10 CONTINUE
E=E+(LPHA)/2.0*LPHA
E=E/AMDA
BB=B-E
WRITE(*,20)BB

20FORMAT(/// AX;MEAN MAXIMUM WAVE
PERIOD="F5.2)
GOTO2
STOP
END

3
C PROGRAMFOR COMPUTING MOST FREQUENT MAXIMUM WAVE PERIOD C USING THE EXPRESSION
C EXP(-(LAMDA*T)). T**(ALPHA-2)=0
C INPUTPARAMETERS
C ALPHA-LPHA,LAMDA-AMDA,TMEAN-MEAN WAVE PERIOD(USED ASAN C APPR).
C VALUE TORUN THEPROGRAM
C OUTPUT PRAMETER
C MOSTFREQUENTMAXIMUM WAVE PERIOD
H=0.1
READ(*,*)LPHA,AMDA,TMEAN
WRITE(*,5)LPHA,AMDA
5FORMAT(///,4X,ALPHA =" 133X, LAMDA =" F6.4)
10A=AMDA*TMEAN
B=EXP(-(A))
C=LPHA-2
C=TMEAN**C
D=B*C
D=D+0.05
L=10*D
D=L/10.0
WRITE(*,*)D
IF(D.EQ.0.00GOTO 30
IF(D.GT.0.00GOTO20
20TMEAN=TMEAN+H
GOTO10
30 WRITE(*,35) TMEAN
35FORMAT(///4X, MOST FREQUENT MAXIMUM WAVE PERIOD =",F11.8)
STOP
END
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4
PROGRAM FOR PREDICTING MOST FREQUENT MAXIMUM
WAVEPERIOD USING THE EXPRESSION
ALPHA-1=LAMDA*T+SUM((ALPHA +i-1)*(LAMDA*T)**-
2(LAMDA*T)**)*EXP((- LAMDA*T))/iIFACTORIAL
INPUTPARAMETERS
ALPHA-LPHA LAMDA-AMDA, TMEAN-MEAN WAVE
PERIOD(APPR. VALUE TO RUN THE PROGRAM)
H=0.00001
READ(*,*)LPHA,AMDA,TMEAN
WRITE(*,5LPHA,AMDA,TMEAN
5FORMAT(///,4X,’ALPHA ="13,3X, LAMDA =" F6.4,3X,’PERIOD =" F5.2)
N=LPHA-1
50B=AMDA*TMEAN
E=0.0
C=EXP(-(B))
BB=2*B
DO10I=0,N
DD=1.0
J=I
D=N+]-BB
DO15II=1,]
DD=DD*B/II
15 CONTINUE
EE=DD*D*C
E=E+EE
10 CONTINUE
E=E+D*C
E=E+B
E=E-N
E=E+0.000005
L=100000*%E
E=1/100000.0
WRITE(*,*)E
IF(E.EQ.0.00000)GO TO 30
IF(E.GT.0.000000GO TO 20
IF(E.LT.0.00000)GO TO 25
20TMEAN=TMEAN-H
GOTO50
25 TMEAN=TMEAN+H
GOTO50
30 WRITE(*,40)TMEAN
40FORMAT(///4X, MOST FREQUENT MAXIMUM WAVE
PERIOD="F5.2)
STOP
END

O000000
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5
PROGRAM FOR EXTREME WAVE PERIOD FROM ERLANG MODEL
INPUTPARAMETERS
LPHA-ALPHA ,LAMDA-ALAMDA ,EXTREME WAVE
PERIOD(APPR.. THE HIGHEST
PERIOD IN THE DISTRIBUTION)-T,TIME OF OBSERVATION
(INDAYS)-NN, RETURN PERIOD-NR(IN DAYS)
OUTPUTPARAMETERS
EXTREME WAVE PERIOD
H=0.00001
2READ(*,*)LPHA,ALAMDA,T,NR,NN
WRITE(*,5LPHA,ALAMDA,T,NR,NN
5FORMAT(///4X,’ALPHA =" 133X, LAMDA =" F6.43X,EXTREME WAVE
1PERIOD(APPRO)=",F5.2,1X,SECS’3X, RETURN
PERIOD="12,1X,’DAYS’,13X,"TIME OF
OBSERVATION="]6,1X,;DAYS’)
10E=0.0
B=ALAMDA*T
N=LPHA-1
A=EXP(-(B))
I[F(N.EQ.0)) GO TO 15
DO20J=1,N
D=A
JI=]
DOA40I=1,]]
D=D*B/I
40 CONTINUE
E=E+D
20 CONTINUE
E=E+A
E=1.0-E
EE=1.0/NN
EEE = (1.0-1.0/NR)**EE
Z=E-EEE
Z.=7+0.000005
L=100000%Z
7 =1./100000.0
WRITE(*,%)Z
IF(Z.EQ.0.00000/GO TO 30
IF(Z.GT.0.00000)GO TO 15
IF(Z.LT.0.00000/GO TO 25
15T=T-H
GOTO10
25T=T+H
GOTO10
30 WRITE(*,50) T
50 FORMAT(///AX, EXTREME WAVE PERIOD =",F11.8,1X,’SECS’)
GOTO2
STOP
END
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C PROGRAMFORRETURNPERIOD OF AN EXTREME WAVE

C PERIOD FROM ERLANG DISTRIBUTION FUNCTION
C INPUTPARAMETERS
C LPHA-ALPHA,ALAMDA-LAMDA, EXTREME WAVE PERIOD- T
C TIME OF OBSERVATION(IN MINUTES OR DAYS)-N
2READ(**LPHA,ALAMDA, T,NN
WRITE(*,5LPHA,ALAMDA,T,NN
5FORMAT(///4X; ALPHA =" J33X, LAMDA ="F6.4,3X,EXTREME WAVE
1PERIOD =",F5.2,'SECS’ 3X, TIME OF OBSERVATION =",J6,1X, DAYS)
E=0.0
B=ALAMDA*T
N=LPHA-1
A=EXP(-(B))
IF(N.EQ.0) GO TO 15
DO20J=1,N
D=A
JI=]
DO40I=1,]]
D=D*B/I
40CONTINUE
E=E+D
20 CONTINUE
15E=E+A
E=1.0E
E=E**NN
E=1.0E
E=1.0/E
WRITE(*,10)E
10FORMAT(///4X,; RETURN PERIOD =" F5.1,1X, DAYS)
GOTO?2
STOP
END
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PROGRAM FOR REALISING AN EXTREME WAVE PERIOD IN A
TIME LESS THAN THE DESIGNATED RETURN PERIOD
INPUT PARAMETERS
LPHA-ALPHA, ALAMDA-LAMDA, EXTREME WAVE PERIOD-

T,TIME OF OBSERVATION(DAYS)NN,RP-RETURN
PERIOD(DAYS), TM-TIME LESS THAN THE DESIGNATED RETURN
PERIOD(DAYS)

OUTPUTPARAMETERS

PROBABILITY PERCENTAGE OF REALISING AN EXTREME WAVE

C PERIOD IN A TIME LESS THAN THE DESIGNATED RETURN PERIOD

2READ(*)LPHA,ALAMDA, T,NN,RP,TM
WRITE(*,5LPHA,ALAMDA, T,NN,RP,TM
5FORMAT(///4X; ALPHA =" 33X, LAMDA ="F6.4,3X,EXTREME WAVE
1PERIOD =*,F5.2,SECS’ 3X, TIME OF OBSERVATION =",J6,1X, DAYS’,

O00000000

13X, RETURN PERIOD =’ F5.2,1X, DAYS’,3X,"TIME LESS THAN THE
1DESIGNATED RETURN PERIOD =’,F5.2)
E=0.0
B=ALAMDA*T
N=LPHA-1
A=EXP(-(B))
IF(N.EQ.0) GO TO 15
DO20J=1,N
D=A
JI=]
DO40I=1,]]
BB=1.0/I
D=D*BB*B
40CONTINUE
E=E+D
20 CONTINUE
15E=E+A
E=1.0E
E=E**NN
WRITE(*,*)E
P=TM/RP
E=(1.0-E)**P
E=1.0E
E=100.0E
WRITE(*,10)E
10FORMAT(/// 4X,;PROBABILITY OF REALISING A WAVE
{PERIOD IN A TIME LESS THAN THE DESIGNATED
IRETURN PERIOD ="F6.2,1X,°%))
GOTO?2
STOP
END
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