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ABSTRACT

Prediction of climate variability is one of the main concerns of geoscientists. The Indian rainfall
variability is the end product of a series of complex interactions between the ocean and atmospheric
processes, so any effect in this process will be reflected in the expected rainfall. Recent studies
have indicated the possible role of solar and greenhouse radiative forcing in earth-ocean-atmospheric
phenomenon. Hence in order to achieve the goal of forecasting of Indian rainfall variability, it is
necessary to have a global data of the oceanic and atmospheric phenomena in conjunction with
external forcing indices such as sunspot time series. Here in this paper, we apply the artificial
neural networks (ANN) based backpropagation scheme to forecast the Indian summer monsoon
rainfall (IRF) using the records of ENSO variability and sunspot cycle. Our analyses reveal a
considerable degree of link among Solar/Sunspot cycle, ENSO related temperature variability (NINO3
time series) and Indian rainfall index suggesting possible role of exogenic-triggering in reorganizing
the tropical ocean-atmospheric system. The analysis, may, provide useful constraints for the
modeling of tele-connected tropical pacific climatic variability and Indian rainfall.

INTRODUCTION

The atmosphere, oceans and biosphere are globally
coupled phenomena, which is often called the Earth
system. Climatic variability is a complex
environmental feature that is intimately associated
with several factors such as temperature, precipitation,
sunlight, and wind. The climate system varies and
changes quasi-periodically because of the complexing
and interactions of the atmosphere with the other
Earth system components. As a result there are
recurrences of short-term extreme events such as
floods and droughts; and long-term episodes such as
dry and wet decades, cool or warm centuries, and
glacial-interglacial cycles. There are two most
fundamental climate variations (i) the daily and (ii)
seasonal cycles. These variations result from
relationships between the sun and Earth on time
scales of days and years. The third most important
climate variation is El Nino-Southern Oscillation
(ENSO) events, which impact the global oceanic and
atmospheric circulations and can produce droughts
and floods in certain regions. Climate also varies on
time scales ranging from decades to millions of years.
Decade-long variations result from interactions among
the different components of the Earth system:
atmosphere, ocean, land, biosphere, and ice. Because
each of these components is characterized by different

response times, their interactions produce climate
variations on many time scales.

The climate system is generally considered to
operate in a complex and non-linear way. Resolving
the complex nature of the variability requires robust
statistical investigations. Recently modern nonlinear
techniques like forecasting time series analysis (based
on the concept of nonlinear dynamical theory) for
prediction of nonlinear geophysical time series has
been exemplified by several workers (Farmer &
Siderowich 1987; Sugihara & May 1990; Casdagli
1989; Tiwari et al. 2003). These methods have been
used to distinguish/characterize the nature of the
dynamical behavior and do not undertake part-to-part
prediction. Here we attempt to predict the pattern of
precipitation based on the concept of neural network.
The complexity in the precipitation record seems to
be primarily associated with both external forcing as
well as internal atmospheric-ocean processes. It is,
therefore, somewhat difficult to assign a single
causative mechanism for controlling the behavior of
monsoon over the Indian subcontinent. In this
situation, it is therefore imperative to understand the
predictive nature of this temporal variability record by
modeling the data using multiple non-linear input-
output relations. Neural Network Models (NNM) is
an appropriate tool for investigations of the climate
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system. We apply the most widely used NNM
architecture, the Backpropagation Network (BPN), to
analyse the dynamics of the precipitation and
temperature related climate system. The purpose of
the present work is to: (1) gain better insights about
the nature of rainfall fluctuations within the Indian
sub-continent in relation to the global climate indices
such as ENSO; (2) determine the signature of inter-
decadal fluctuations and its relations with indices of
global climate, if any; (3) develop a dynamical model
using the neural networks to test the short-term
climate prediction and possible linkages and coupling
of ocean and atmospheric processes.

EL NINO-SOUTHERN OSCILLATION EVENT
(ENSO)

The strong coupling and interactions between the
Tropical Ocean and atmosphere play a major role in
the development of global climatic system. The El
Nino/Southern oscillation is the outcome of such a
coupling and refers to a warm inshore current
annually flowing south along the coast of Ecuador but
extending down the coast of Peru. The Fl Nino events
generally recur approximately every 3-5 years with large
events spaced around 3-7 years apart. The Southern
Oscillation Index (SOI) is the measure of sea
level atmospheric pressure difference between Darwin
Australia (western Pacific) and Tahiti (eastern Pacific)
(Philander 1990; Cane 1992; Bigg 1996). There is a
strong coupling between the El Nino event and
the Southern Oscillation Index. The El Nino-
Southern Oscillation event is often referred to by the
acronym ENSO. El Nino episodes (also called Pacific
warm episodes or ENSO) and La Nina episodes (also
called Pacific cold episodes) represent opposite
extremes of the ENSO cycle. This has far reaching
hazardous impact including drought, floods and
intense rainfall with severe human consequences as
well as distinctive “telelinked” pattern of climatic
anomalies. This phenomena has also impact on the
Asian monsoon that drives the surface ocean
seasonality in the Indian and western Pacific oceans
and Atlantic inter-tropical convergence zone (Cole,
Fairbanks & Shen1993). An event of this type affects
the climate of a large portion of the globe. The
strongest and most reliable effects occur in the
tropical Pacific Ocean where El Nino and Southern
Oscillation are strongly coupled. Other parts of the
world, especially in the middle Latitudes are affected
through teleconnections (Philander 1990).
Teleconnections are represented as statistical
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associations among climatic variables separated by
large distances.

CLIMATIC AND SOLAR SUNSPOT CYCLES

Sunspots have been observed since thousands of years.
The Sunspot number is a measure for solar variability.
The Wolf or Zurich Sunspot number is defined as ten
times the number of sunspots plus the number of
sunspots all multiplied by an observer-related
constant. (Hoyt & Schatten 1997). It has been
established that the sunspot activity is a cyclic
phenomena with periodicities of 11, 22 and 80 years.
Several recent studies of solar-climate relationship
have established that the lower temperatures are
associated with below average sunspot activity while
the higher temperatures are associated with above
average sunspot activity. This cyclic pattern also
appears to be associated with the global climatic
fluctuations. Recent research workers (Labitzke & Van
Loon 1989, 1992, 1993) have provided intriguing
evidences, which suggest that a possible link exists
between solar cycles and the earth’s climate. Mendoza,
Perez-Enriquez & Alvarez-Madrigal (1991) reported on
possible connections between solar activity and El
Nino’s, while Reid & Gage (1988) and Reid
(1991) reported on the similarities between the 11-
year running means of monthly sunspot numbers and
global sea surface temperature. These findings suggest
that there is possible coupling between temperature-
ENSO and solar signals.

SOURCE OF DATA

For the present analyses, we have taken here the
following three sets of data for a common period of
42 years spanning over 1950 —1991: (1) Smoothed
Sunspot number (2) updated Indian Rainfall (IRF) time
series (in mm) of the whole country and (iii) NINO3
temperature record as proxy for the ENSO response.
The smoothed yearly sunspot number is taken from
the National Geophysical Data Center, Boulder,
Colorado shown in Fig 1(a). The recently updated
instrumental annual rainfall index of the whole
country (Singh & Sontakke 1996) is shown in Fig. 1(b).
The present annual IRF data is area weighted,
homogeneous and cover the whole country. The third
data set is NINO3 Global Sea Surface Temperature
(SST) indices (in °C) which is one of the best available
records of temperature variability from the Eastern
equatorial Pacific (5°S-5°N, 150°-90°W) (proxy for
ENSO) variability (Kaplan et al. 1998) and widely
analyzed by several workers (Felis et al. 2000) (Fig. 1(c)).
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Figure 1. Time series plot for the three data sets (a) sunspot numbers (b) Indian rainfall (in mm) of the whole
country and (c) sea surface temperature (in °C) for the year 1950-1991.
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ARTIFICIAL NEURAL NETWORKS

An artificial neural network (also referred as
neural network) is a computing method works on the
principle of structure of brains and nerve systems.
When compared with the other analytical
approaches, the neural network approach does not
require human expert knowledge in terms of
mathematical descriptions of the problem. A typical
neural network consists of inter-connected set of
processing units called neurons. Here in this present
study we have used the feed-forward artificial neural
network.

Backpropagation

There are number of algorithms available for the
training of neural network. Among them, the Back-
propagation is most commonly used [developed
independently by several authors (Werbos 1974; Parker
1982; Rumelhart, Hinton & Williams 1986)] and has
been applied successfully to a broad range of fields
such as speech recognition, pattern recognition, and
image classification. Its training procedure is intuitive
because of its relatively simple concept i.e. adjust the
weights to reduce the error.

Back-propagation networks topology is usually
layered, with each layer fully connected to the layer
before it and the one next to it. Neurons receiving
input data form the input layer, while those generate
output to users form the output layer. The input to
the network propagates forward from the input layer,
through each intermediate layer, to the output layer,
resulting in the output response. When the network
corrects its connecting weights, the correction process
starts with the output units and propagates backward
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Figure 2. Architecture of three-layered feed forward
back propagation neural network.
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through each intermediate layer to the input layer-
hence the term Back propagation. Fig.2 shows the
schematic of a three-layer back-propagation neural
network.

A back-propagation network may have one or more
than one hidden layers.

DATA PREPARATION AND NETWORK TRAINING

This procedure is crucial to the success of applying
neural network approach. The data preparation
includes the selection of input variables, and
normalizing between 0 and 1. The normalization is
necessary for two reasons: (1) If the data used with a
neural network is not scaled to an appropriate range,
then the network will not converge on training, or
otherwise will not produce meaningful results; (2) for
the neurons’ transfer functions. Since if either a
sigmoid function or a hyperbolic tangent is calculated,
then these can only be performed over a limited range
of values. A neuron only produces output whose
absolute value is less than 1, since the transfer
function has asymptotes at f(x) = 1 and -1 (the
exception to this being when a linear transformation
is used).

There are two phases in its training cycle, one to
propagate the input pattern and the other to adapt the
output. It is the errors that are backward propagated
in the network iteration to the hidden layer(s). During
the neural network training each hidden and output
neurons process the inputs by multiplying them with
their weights. The products are thereby summed and
processed using an activation function like sigmoid,
tan sigmoid etc., It is the errors that are backward
propagated in the network iteration to the hidden
layer. (Rumelhart & McClelland 1986).

There is no universally applicable formula to
be used for deciding the size of middle layers.
Generally networks with too many hidden neurons
tend to memorize the input patterns and with too few
hidden neurons may not be able to simulate a
complex system at all. A network with more hidden
neurons also requires more computing power and
more training time needed. It is a common practice
to fix the number of hidden layers in the network and
then choose the number of neurons in these layers.
It has been shown that only one hidden layer is
required to approximate any continuous function,
given that sufficient degrees of freedom (i.e.
connection weights) are provided. (Cybenko 1989).
Hence one hidden layer has been used for this study.
Consequently network with one hidden layer of 25
neurons converges faster (took less time) to reach the
minimum error goal of 0.001.
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Figure 3. (a) Predicted model and (b) Scatter diagram showing the predicted Vs observed values of the IRF time

series data displayed in fig. 1(b).

RESULTS

The selection of input variables is solely problem
dependent. After analyze the problem, three variables
were chosen for this study. They are: Southern
Oscillation Index (SOI), Sunspot Number and Yearly
rainfall index. The analyses includes mainly two steps:
Firstly the data for the three input sets i.e. Solar/
Sunspot cycle, ENSO related temperature variability
(NINOS3 time series) and Indian rainfall index time
series are trained individually. Three-layered feed
forward neural network models were constructed to
analyse the climatic variability of the Indian
continent. Secondly, taking the ENSO related
temperature variability (NINO3 time series) and
the solar sunspot number as two input variables and
the IRF time series as the output for the neural

network, the network was trained and best fitted
network model for the prediction of the precipitation
pattern over the Indian continent has been
constructed.

Fig.3 (a, b) show the fitted predicted neural
network model and its corresponding scatter diagram
illustrating the predicted Vs observed values
respectively for the IRF time series displayed in Fig.1b.
It can be seen that most of the predicted and observed
values coincide along the straight line. This might
suggest that the underlying IRF data have some
deterministic components in it. If the data is non-
deterministic, it will not fall in such an orderly
pattern. However, the more perfect is the network
training, more closely the predicted points organized
towards the straight line. The ANN models provided
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Figure 6. (a) Predicted model (b) Scatter diagram showing the predicted Vs observed values (c) Year wise error plot
for the IRF time series considering the temperature variability data (NINO3 time series, proxy for ENSO) and the
solar sunspot number as the two input variables for the network.
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a good fit showing a high feasibility for the further
prediction.

Similarly Fig.4(a) and (b) show the fitted predicted
neural network model and its corresponding scatter
diagram illustrating the predicted Vs observed values
for the Sunspot cycles. Fig.5 (a) and (b) shows the
fitted predicted neural network model and its
corresponding scatter diagram illustrating the
predicted Vs observed values for the ENSO variability.
It is quite interesting to note that the three ANN
models show good fit suggesting the applicability of
ANN technique for predicting complex geophysical
problems.

Keeping in view the predictive capability of the
ANN technique and also considering the possible
linkages among the ocean atmospheric processes as
discussed in introduction, we tried here to predict one
phenomenon considering another as an input
parameter. Figure 6 (a) shows the predicted model for
the IRF time series, considering (i) the temperature
variability data (NINO3 time series, proxy for ENSO)]
and (ii) the solar sunspot number as the two input
variables for the neural network. Figure 6 (b) shows
the corresponding scatter diagram illustrating the
predicted Vs observed values for the same time series
obtained from the network training. Figure 6 (c) show
the year wise error plot for the fitted predicted model.
Here the total error obtained is around =0.02 for the
model, which is considerably less. This shows that
there is an ample depending away these indices and
hence suggest a possible link among them.

The neural network modeling result shows that
prediction of precipitation pattern over the Indian
continent is possible within some error bounds.
However, there are several other feedback factors
affecting the Indian monsoon that have to be
considered. A more detail analysis taking into
consideration various other parameters are required for
detail analysis and interpretations. This result,
however, provides useful basis for developing models
for the study of monsoonal behavior and prediction
on rather more rational way.

CONCLUSIONS

Our results suggest that neural network technique is
promising tools for modeling and prediction of the
complex environmental system. Results can be
summarized as follows:

(i)The ANN constructed models suggests high
feasibility of the application of ANN technique for the
prediction of yearly rainfall index within some
reasonable error bounds.
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(ii) The predictive analysis suggest a considerable
degree link among Solar/Sunspot cycle, ENSO related
temperature variability (NINO3 time series) and Indian
rainfall index and

(iii) Finally, it provides evidence for tele-connection
of tropical pacific climatic variability across time scale
ranging from years to decades and also the possible
role of exogenic-triggering in reorganizing the tropical
ocean-atmospheric system.
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