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ABSTRACT

The main purpose of this paper is to develop methodology to determine geologically inspired layer
boundaries from the inverse model obtained using inversion techniques like straightforward Inversion
Scheme (SIS) and Occum’s wherein sharp boundaries are missing. These techniques essentially
solve for an over parameterized model and through regularized minimum norm solution a smooth
model achieved. We present two different methodologies to identify sharp boundaries of the model
inherent in the smooth model. In first, the solution of linear inverse problem is improved iteratively
through weighted minimum norm inverse, the weight being taken from the current solution. The
technique is referred as Iterative Straightforward scheme (ISIS). The second method is an analytical,
based on the application of smoothing filter and referred as Edge-Preserving smoothing (EPS). The
implementation of these methodologies are demonstrated by choosing different test models
from the published literature and over a field data set. These methodologies also reduce the
conspicuous oscillations in the smooth solutions caused due to conversion of sharp boundaries

to the smooth one.

INTRODUCTION

The quantitative interpretation of Vertical Electrical
Sounding (VES) data has a long cherished history. The
separate grouping of indirect (Flathe 1955; Onodera
1960; Roman 1963; Van Dam 1964; Mooney et at.
1966; Ghosh 1971b) and direct (Langer 1933; Pekeris
1940; Vozoff 1958; Ghosh 1971a) methods are no
longer required. Due to improved methods of
computations based on linear filter theory (Kunetz
1966; Ghosh 1971b; O’ Neill 1975; Anderson 1975;
Guptasarma 1982) and exponential approximation of
kernel function (Santini & Zambrano 1981; Sri Niwas
& Israil 1986) coupled with fast computers and
inversion techniques (Inman, Ryu & Ward 1973;
Inman 1975; Jupp & Vozoff 1975; Johensen, 1977;
Constable, :arker & Constable 1987; Gupta, Sri Niwas
&Gaur 1997; Porsani. Sri Niwas & Niraldo Ferriera
2001) the quantitative interpretation is completely
revolutionized. In this endeavor, it is important to
know how accurately the layer parameters are
determined from VES data.

It is well known that the non-uniqueness and
instability of inverse solution are major concern as
yet. The problem of instability of least square inverse
solution in case of erroneous’ data is chronic and
requires fresh approach other than the classical ones.
Depending on the ratio of layer thickness and layer

resistivity/conductivity in a vertical profile, layer
parameters are non-unique to a degree due to the
principle of equivalence. There are broadly two classes
of inversion techniques being employed to solve the
nonlinear resistivity inverse problem. The more
frequently used is the iterative one that requires quasi-
linearization of non-linear problem and adjusts the
model parameters iteratively to bring its response into
some degree of coincidence with the data. Obviously
it requires an educated guess of the initial model to
start the iterative process and can he defined using
the principle of minimum numbers of layers (Muiuane
& Pederson 1999). The problem of instability is
contained through regularization process. However, in
these techniques containment of the instability does
not necessarily mean containing non-uniqueness also.
The non-uniqueness due to equivalence can only be
contained if one of the layer parameters are a priori
known or assumed to be known. Thus in the
alternative approach like Occam’s inversion (Constable,
Parker & Constable 1987) and Straightforward
Inversion Scheme (Gupta, Sri Niwas & Gaur 1997),
in which the thicknesses are assumed to be known,
making over-parameterization of the model and some
kind of smooth solutions are obtained. However, in
these solutions identifying the sharp boundaries is a
problem. In case sharp boundaries are needed for
delineating the real geological structures, some
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methodology for delineating the layer boundaries are
required for meaningful implementation of smooth
inversion techniques.

The focus of this paper is to delineate the layer
boundaries from the smooth solutions using either
of the two procedures discussed herein. In first
procedure, the smooth solution is improved iteratively
using weighted minimum norm universe wherein the
weights are obtained from the current solution. The
second procedure is analytical that has been adopted
from the edge-preserving technique used by Yi Luo et
al. (2002). For the sake of convenience, we would be
demonstrating the implementation of these
procedures using SIS only by choosing several
synthetic data set over known typical test models.

The SIS is based on the model of uniform layer
thickness and is the natural extension of the concept
of exponential approximation of the resistivity
transform function corresponding to the air-earth
interface (Sri Niwas & Israil 1986), there by
transforming the non-linear inverse problem to linear
one. Regularized minimum norm inversion provides
nearly continuous smooth variation of resistivity-
depth model that adequately fits the apparent
resistivity data. The idea of determining sharp
boundaries is based on the compact inversion (Last
& Kubik 1983) which not only reduces the number
of layers used in SIS but also focus the inversion to
delineate the boundaries corresponding to the real
geological structure. The following section discusses
the formulation of proposed iterative straightforward
inversion (ISIS) technique.

ITERATIVE STRAIGHTFORWARD INVERSION
SCHEME

The expression for the potential an arbitrary point
placed at a distance r on the surface of the N- layered
earth model, due to a point electrode of current
strength I is given by (Stefanescu 1930)

09 = 5 TN I A il

where j,()Jis the zeroth order Bessel function of first
kind T, is the electrical impedance at the surface of
layered earth.

By writing T,(A)in the form of series expansion as

T.=3T.e" g,=00 2)

Sri Niwas & Israil (1986) obtained the following
expression for the apparent resistivity (p ) for
symmetrical electrode configuration as

[ACE ZTUGT’@, (3)
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where
1
G 9="T-G -G/ () (4
with,
G(Jl)(s) = 2 : 2,
(81 + S)}é ’ (5)

Which is a green’s function of a point source, £, being

a real constant. The parameter m in equation (4)
defines specific electrode configuration, e.g.,
Wenner(m=2), Schlumberger (1<m<1.1), pole-pole
(m= o0 ). In straightforward inversion the concept of
uniform layer thickness (d) has been introduced so as
the choice of€; = 2jd would make T, a function of
layer resistivity alone. It has been shown that the
coefficients T, are the function of reflection function
(R,), which is obtained from reflection coefficients
define at the each interface. Thus concept of uniform
layer thickness allows us to rewrite the equation (2)
as

T.0) = YTV, (6

where u=g™";T,,=p, and for j>0 , the coefficient

are related to reflection coefficients (Gupta, Sri Niwas
& Gaur 1997).

Thus by introducing the concept of uniform layer
thickness (d), the coefficients T . becomes a function
of layer resistivity alone. In equation (3) the apparent
resistivity values can be interpreted as superposed
contributions from a number of sources (images), each
of strength T, with the corresponding Green function
as weights. Thus resistivity inverse problem is
required to estimate T, which can be used to
compute the reflection coefficients and subsequently
resistivity of the pre-assumed uniform layers. The
regularized minimum norm inversion of equation (3)
has been used in SIS to obtain the set of coefficients
T, which in turns resulted the smoothed model
corresponding to the apparent resistivity data set. It
has also been noticed that the smoothed, set of
coefficients generate unwanted reflection function and
oscillation at the sharp boundaries. In some practical
application where the main objective of inversion is
to delineate a model with a few geological boundaries
and thus requiring the few non zero coefficients (T )
corresponding to the real electrical boundaries, the
smooth inversion techniques such as SIS and
Occum’s may not be helpful. With the objective to
obtain sharp boundary model the SIS algorithm is
modified so as the undesired coefficients (le) reduces
to zero iteratively and enhance the values of the
coefficients corresponding to the actual boundaries.
Such approach has been used earlier by Last & Kubik



(1983) for the compact gravity inversion and
Portniaguine & Zhdanov (1999) in focusing
geophysical inversion. These approaches disperse the
smoothed distribution of parameters with the well-
focused distribution. In the present case, the
coefficients (T ] are the set of parameters and the
objective is to obtained true set of coefficients
corresponding to the actual boundaries. So the concept
of compact inversion is applied here accordingly
equations (3) is solved using weighted minimum norm
method, the weights being defined as

[t 2 t
Wy = (T yt 52) (7)
where e is chosen sufficiently small value

This is equivalent to maximizing its compactness.
By using the stabilizer (equation 7), as weighting
function the solution of equation (3) can be written as

T=wia(aw At + W) 'R (8)
where the column vector R consists of apparent

resistivity values and coefficient matrix A can be
written as
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and W_is the weight function defined for priori
estimated noise level.

Solution can be obtained iteratively with the
application of equation (7) at each step. The solution
in the first iteration is not known. Therefore for the
first iteration weighting matrix is set to unit matrix
and the solution give direct SIS solution.

Edge-preserving smoothing

The method is based on the recent technique
introduced for the noise reduction applied to the
seismic data (Yi Luo et al 2002. The technique looks
for the most homogenous fragment around each point
in the model parameters set and assigns the average
value of the selected fragment to that parameter. This
may be explained by considering the following five-
point Edge-preserving smoothing (EPS) operator. For
any depth location at index i, one first calculate
standard deviations for five shifted windows given by
Window 1: (R, R, R,, R, R,

i-2/ i-1/ 1+0)’

Window 2: (R, R, R, R, R, ),
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Window 3: (Rirzf Ri—l’ Ri+0’ Ri+1' Ri+2)’
Window 4: (R , R,,, R, R,,, R ),
Window 5: (Rirof Ri+1' Ri+2' Ri+3’ Ri+4 ’

Here, R, represent the resistivity of i layer of the
model obtained using SIS inversion. Next, we select
the window that has the minimum standard deviation,
calculate the average over the selected window, and
assign the average as output at the i layer resistivity.
Repeating this process for all layer resistivity will yield
the output model. The procedure will not be applicable
to the first few layers and last few layers. The number
of first and last layers depends upon the window
width. Thus the resistivity of the first and the last
layers are not modified. The technique has been used
successfully to the smoothed model obtained from SIS
solution. The output model presents a fewer
boundaries with sharp discontinuity.

i+0/ i+1/

NUMERICAL RESULTS

Following examples demonstrate the applications of
the techniques discussed in Iterative Straightforward
Inversion Scheme to determine the layer boundaries
from smooth model solution. Typical synthetic
models have been used to demonstrate the capabilities
of resistivity inversion techniques. The model
parameters are:

Model I
p, = 20 Ohm - m, d = 20 m;
p, = 10 Ohm - m, d, = 20 m;
p, = 1 Ohm - m,

Model II
p,= 10 Ohm - m, d, =20 m;
p, = 50 Ohm - m, d, = 40 m;
p, = 150 Ohm - m,

Model IIT
p,= 1 Ohm - m, d =1m
p,=020hm-m, d,=5m
p, = 1 Ohm - m,

Model IV
p,= 10 Ohm - m, d =10 m;
p, = 2 Ohm - m, d, =10 m;
p, = 50hm-m d, =20 m;
p,= 2 Ohm —m, d, =10 m;
p, = 100 Ohm - m

Model V
p,= 10 Ohm - m, d = 20my
p,= 50 Ohm -m, d,= 100 m;

p, = 150 Ohm - m,
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Figure 1. Comparison of inverted models obtained using straightforward inversion and proposed iterative straightforward

inversion along with true model (Q-type model).

Model I, a three layer model taken from Gupta et
al. (1997), which is also studied by Gai-Shan (1985)
who has interpreted this in terms of composite
parameters: total longitudinal conductance, total
transverse resistance, and the substratum resistivity.
This is due to the difficulty in obtaining solution
using quasi-linearized technique. Fig.1 shows the
comparison of models obtained using direct SIS
technique (zero™ iteration), 1° iteration, the final
model obtained at 8 iteration along with the true
model. It may be seen that the oscillation presents
in SIS solution (zero™ iteration) is largely reduced in
final model. First iteration results show the speed of
CONVETgence.

Model II is a three layer model with resistivity
increasing with depth. The increasing resistivity
variation constitute an ideal model for testing
resistivity inversion technique (Muiuane et al. 1999).
The inverted solution using SIS (zero™ iteration), 1
iteration and at 7" iteration (final model) along with
the true model are shown in Fig.2. In final solution
boundaries are very close to the true boundaries and
the oscillation are reduced to a minimum level.

Model III is again a three layer model studied by
Simms & Morgan (1992) to study the phenomenon
of the equivalence in resistivity data inversion. It may
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be mentioned here that our objective in this paper is
not to resolve the equivalence problem in resistivity
data inversion neither the technique discussed here
addresses the equivalence problem. This example only
demonstrate the performance of the technique over
the equivalence model. Fig.3 shows the SIS solution
(zero®™ iteration), 1°t iteration, final model (8™
iteration) along with true model. This show that the
technique is capable of handling of equivalent problem
up to a limited extent.

Model 1V is a five layer model in which apparent
resistivity curves yields no indication about the correct
number of layer in the true model. For such model
quasi-linear method would not succeed as it needed
an initial guess model (Gai-Shan 1985). However the
SIS technique (Fig.4) successfully indicated the
presence of five layer in the apparent resistivity data.
The improvement in model using present’ technique
in I* iteration, 15% iteration (final model) is shown
in Fig.4, which also demonstrate SIS solution along
with the true model. The final solution delineate all
five layers and is very close to the true model.

Edge preserving smoothing method discussed in
section (Edge-preserving smoothing) can be applied for
all smooth model solution, the performance has been
demonstrated over a three layer Model V. SIS
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Figure 2. Comparison of inverted models obtained using straight forward inversion and proposed iterative straightforward

inversion along with true model (A-type model).

generated smooth model is highly oscillatory with 2m
unit layer thickness. Edge preserving smoothing
technique with window width 5 has reduced these
oscillations to a minimum value and also retains the
boundary of the model. It may be mentioned here that
first and last three layer resistivity of 2m thickness
remain unchanged for 5 points window width.
Therefore last layer resistivity is same as obtained by
direct SIS method. Random Gaussian noise has been
added to the apparent resistivity data and output model
is compared with the true model. Fig.5 demonstrate
output model with 5%, 10% and 20% Gaussian noise
added in the data along with the true model. It has
been observed that up to 10% error level output model
closely follows the true model.

Field Example:

The techniques discussed in the present paper can be
applied to the field apparent resistivity data. To
demonstrate this aspect a vertical electrical sounding
data set recorded using Schlumberger configuration
near a borehole site, Roorkee (Uttaranchal) area has
been used. The lithological boundaries from borehole
have been correlated with the boundaries delineated

using present method. Fig.6 shows the measured
apparent resistivity curve, smooth inverted model,
layered model obtained using present method and the
borehole data available for the site. It may be seen
that no boundary is visible clearly in the smooth
inverted model, whereas boundaries delineated using
present method are very close to the real boundaries
present in the borehole data. In layered model, the
first boundary from the surface appears at shallower
depth (1.5m) whereas in borehole data this boundary
is at 3m depth. The increase in resistivity at shallower
depth is due to the increase in compactness of the
top surface layer below the depth of 1.5m and thus
forming resistivity boundary. Other lower boundaries
delineated by the present method from the resistivity
data are closely matching with the boundaries present
in the borehole data.

CONCLUSIONS

Two techniques have been presented here for deriving
layer boundaries from the smooth model obtained
using SIS technique. The technique can also be used
for the smooth models obtained from other smooth
inversion techniques such as Occum’s inversion. The
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Figure 3. Comparison of inverted models obtained using straight forward inversion and proposed iterative straightforward
inversion along with true model. The technique has been used successfully to the smoothed model obtained from
SIS solution. The output model presents a fewer boundaries with sharp discontinuity.
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Figure 4. Demonstration of the performance of the proposed iterative straightforward inversion technique over a
typical five layer model along with the results of straightforward inversion and true model.
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Figure 5. Performance of proposed edge-preserving smoothing technique over a three layer model with noise free and

noise are added to the synthetic data.
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Figure 6. Performance of the sharp boundary method over field Schlumberger apparent resistivity data collected from
the Roorkee (Uttaranchal) area and its comparison to the borehole data.
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performance of these techniques have been
demonstrated over test synthetic models showing the
resistivity variation typically observed in variety of real
geological situations and over a field data set. These
test models include common three layer case (Model-
I, 2 and 5), equivalent case (model-3) and a five layer
model. Results show that the proposed techniques are
capable of delineating layer boundaries very close to
the boundaries present in the true model. The first
technique is a extension of the regularised inversion
algorithm and is referred as Iterative Straightforward
Inversion (ISIS) whereas the second method is an
analytical one and based on the application of
smoothing filter referred as Edge Preserving and
Smoothing (EPS). In ISIS the convergence rate is fast
and final model is obtained in less than 20 iteration
in all the cases studied.
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