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ABSTRACT

The existing analogy between dc current flow and ground water flow under steady state conditionsin
earth medium, has allowed to extend the results from geoelectrical method in computing heads
in a homogeneous anisotropic aquifer system with inclined bedding planes due to a surface water
source. The results are presented as equipotential (hydraulic head) plots for different coefficients
of anisotropy and orientation of bedding planes of soil strata.

INTRODUCTION

Ground water flow problems generally assume
homogeneous and isotropic porous media with respect
to hydraulic conductivity. However, all layered soil
formations exhibit anisotropy due to stratification.
Due to anisotropy, the directions of flow and of the
hydraulic gradient will not be parallel (Marcus 1962)
to each other. Further, several numerical ground water
flow models assume that principal axes of anisotropy
coincide with the reference coordinate axes (Mc
Donald & Harbaugh 1984).

The hydraulic conductivity is influenced by
heterogeneity and anisotropy (Freeze & Cherry 1979),
which need to be clearly distinguished. In case of
anisotropy the hydraulic conductivity varies along with
the direction of measurement only at a given point
whereas in case of heterogeneity, it varies throughout
space within a geologic formation. The directions in
space at which the hydraulic conductivity, K attains
its maximum and minimum values are called the
principal directions of anisotropy and they are always
orthogonal to each another (Freeze & Cherry 1979).

The theory of flow of fluids through anisotropic
porous medium is presented by Marcus (1962),
Scheidegger (1957), Polubarinova-Kochina (1962) and
Harr (1962). Some investigations on the
transformation of anisotropic medium to isotropic
medium are available (Mishra 1972; Strack 1989).
Further, theory on geoelectric sounding in
homogeneous anisotropic earth medium of inclined
bedding planes provides analytical results for the
computation of surface distribution of electric

potentials due to a point d.c current source
(Bhattacharyya & Patra 1968).

In the present effort, by considering the analogy
between dc current flow and ground water flow under
steady state conditions (Wolfe & Bodl 1997; Pujari
1998), the analytical procedure for computing heads
in a homogeneous anisotropic aquifer system with
inclined bedding planes due to a surface water source
is derived from fundamentals from the existing
geophysical literature on d.c current flow in
homogeneous anisotropic earth medium. The
numerical results are presented as equipotential
(hydraulic head) plots for different coefficients of
anisotropy and orientation of bedding planes of soil
strata.

THEORETICAL ASPECTS

In groundwater problems soil body is considered to
be a continuous medium of many , which serve as
the fluid carrier. Fluid flow (Harr 1962) in a porous
medium with interconnected openings is governed by
Darcy’s law Viz.,

0]
0x

where g [LT] is the specific discharge, d@/dx is the
hydraulic gradient due to change in hydraulic head ¢[L]
over the distance, x[L]|, and K[LT"'] is the hydraulic
conductivity. K is related to the intrinsic permeability
of the medium k[L?], fluid density p[ML?], dynamic
viscosity of the fluid uy[ML'T"']|, and acceleration due
to gravity g[L'T?] by the equation

=.K

(1)
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Figure 1. Scheme of the homogeneous anisotropic
aquifer system with infinite extent with a point source,
Q located centrally on the surface. Dotted lines
represent bedding planes of soil strata with angle of
dip, a.
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The hydraulic conductivity parallel to the layer, K|
in the direction of x*-axis (Fig. 1) being larger in
magnitude than the one K, perpendicular, (in the
direction of y*-axis) to the bedding plane. Let a be the
angle of dip. Let, also, (x, y) and (x*, y*) be the
Cartesian coordinates of an arbitrary point P in the
actual plane and the rotated plane respectively.

The plane of stratification of the soil bedding can
either be parallel to the ground surface or be inclined
with an angle of dip, a. It is assumed that the
dimensions of the aquifer system extend to infinity.
It is assumed that the major principal direction of
anisotropy is along the plane of the soil strata while
the other is perpendicular to it. Referring to Figure-1,
the following relationship holds good:
X = X* cos O - y* sin d (3)
y =Xx*sina + y* cos d

Letq, q and q*, q*. be the corresponding specific

X Yy X Yy

discharge vectors in the actual and rotated planes. The
expressions for q_and q, in terms of q* and q’, are
similar to eqn. (3):
g, =g, cosa-qrsina (4)
q, =q,” sin o + g * cos O

Now, application of Darcy’s law in terms of x*,
y* coordinate system yields:
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where K, and K, are the principal values of the
hydraulic conductivity.
Using eqn.(5) in eqn.(4), we get:

sin o

q, =-K, cos a + K,

* o (6)
0 o]
q:'K1 ? sin o —K2 (pcosu
y ox* @/*
By the application of chain rule to eqn.(3) yields:
dp dp B 00 & 0] 00
—=— — + — — = —cosO0 + — sina
ox* 0x ox* dy ox* Ox 15 % (7)
op Odp & 09 ¢ 00 09
—_=— — + — — = — sIina + — cosd
oy* ox oy O oy* Ox &

Combining eqn.(6) and eqn.(7), the Darcy’s law for
anisotropic hydraulic conductivity for two-dimensional
flow is obtained as:

09 09
=-K -K
BT T T Ty 8
_ ¢ ¢
q, = - ny ox KYV dy

where,
K = K cos’a + K, sin*a

XX 1 2
K =K =(K -K)sina cosa (9)

Xy X 1 2
K =K, sin’0 + K, cos’a

w 1 2

In a similar fashion, for the general case of three-

dimensional flow in (x,y,z) coordinate system, it can
be shown that Darcy’s law takes the form:

a i) a
g =-K ® P P P oo
x XX aX Xy ay Xz &
a i) a
q,=-K, ® x ¢ k% (10)
ox W 9y LS
a i) a
g =-K ® K P K 099
z zX &( zy ay zz &
The coefficients K, (i =x,y, z; j = X, y, z) in eqn.

(10) are known as the coefficients of the hydraulic
conductivity tensor, represented by:

K, K, 6 K,
K =|K K_K (11)
Xy Tyx XX
K K_K
vy T oxx XX
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Eqn. (11) is a symmetric matrix with the diagonal
elements K, K, and K_and K =K fori=x,y, zj
= X, y, z. Thus, in an anisotropic medium the
hydraulic conductivity tensor is actually characterised
by six components.

Further, it is possible to orient the coordinate axes
along the principal axes of anisotropy such that K,
=K,=K =0 Then, the resulting governing
equation for steady state groundwater flow in a
homogeneous anisotropic porous medium reduces to:

0] & &

K + K + K =0 (12)
XX aX*Z vy ay*z zz &*2

Choosing a new system of coordinates with,

W =xVK_, n=yVK , {=2z"VK, (13)

P24

the above equation transforms to the Laplace’s form:

> a a
hd + hd + L 0 (14)
o2 on>? e
The solution (Bhattacharyya and Patra, 1968) of
which is given by:

C C
¢=—— = (15)
\/2+ 2+2 2 *2 *2
LRI B XL
K K K
XX vy 2z

DERIVATION OF HYDRAULIC HEADS

Let us consider the plane of stratification as the XY-
plane in the homogeneous anisotropic porous
medium. Being very small, in most practical cases, the
anisotropy in the plane of stratification can be
neglected. Thus, let the longitudinal hydraulic
conductivity be K =K = K, (parallel to the plane of
stratification) and the transverse hydraulic conductivity
be K_= K, (normal to the plane of stratification). It
is possible to define two parameters of the anisotropic
medium, the coefficient of anisotropy (i) and mean
hydraulic conductivity (K ), as follows:

1y

K, — K
B= e and K_=VK K,, such that K_= E =pBK, (16)
2

Using these parameters eqn. (15) can be re-written
as:

CK 1/2
1
(){*2 + y*Z + BZX*Z)I/Z
Then, the specific discharge components are

obtained by taking the respective derivatives (For details
see Annexure I) as:

¢ = (17)

L K13/2 CX*
4. =, 3 *2 2 2132 (18)
& +y?+ pz7
L K13/2 Cy* (19)
4, _(X*2 + oyt 4 Bz
Kl‘?’/2 Cz~
q. (20)

:(}(*2 + y*Z + 822*2)3/2

such that the resultant specific discharge, q is given

by,

K13/2 C (X*2+y*2+z*2)1/2
X(2 + y*Z + B2Z*2)3/2

q :\/qx*z+qy*z+qz«z — (21)

Let the point source on the surface of the
homogeneous anisotropic medium be of strength Q
(m?s). In order to evaluate the constant of integration
C, let us consider the total flow through a hemisphere
of radius R in the ground beneath the source.
Obviously this total outflow should be equal to the
total input, Q. Therefore, referring to the spherical
coordinate (Bhattacharyya & Patra, 1968) system, we
have:

2n n/a2
Q= fqds = q R? sinB d8 do (22)
J1 =0

Since,
x*2 4+ y*2 = R? sin’0 (23)
and
z*2 = R? cos?0 (24)
equation (21) becomes

K 3/2 C
q . (25)

T ®[1 + (B*-1] cos?O?)
and
2 5inB do B 2I'ICI<'13/2

Q= CK13/2J'dq;[1 +(B?-1) cos*6]*? B B 126)

Details of integral evaluation in eqn. 26 are
provided in Annexure II.

Therefore,
Q
c- 2P (27
2MK 3
Now, eqn. (17) can be re-written as:
Q
¢ = (28)

ZI-IKm\/ X*2+ y*2 + 822*2

The equation (28) provides the hydraulic potential
at any point in a horizontally stratified medium due
to a point source Q. If the planes of stratification
makes an angle of dip a, then the expression for
hydraulic potential can be generalised by considering
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a rotation of the coordinate axes (x,y,z) through an
angle a. Let the rotated coordinate axes be (x',y’, z').
Assuming the strike of the bed x be along x* the
original and the rotated coordinate axes are related by:
X" =x
y* =ycos a+ zsin d (29)
z*¥=-ysin a + z cos A
Incorporating the relationship given by eqn. (29) in
equation (28) yields the expression for hydraulic
potentials in a homogeneous anisotropic medium with
inclined planes of stratification as:
Q

Q= (30)

2MNK_+/ x* +(ycosa +zsina)?+ B*(-ysina +zcosa)>

NUMERICAL EXPERIMENTS

A computational procedure has been devised based on
the derived analytical expression (Eqn. 30) for finding
the hydraulic head distribution in a homogeneous

anisotropic medium. Using input information on
source strength (Q), Hydraulic conductivity values in
the principal directions (K, K,), angle of dip of the
strata (o), and grid (r,z), the proposed method
computes the steady state hydraulic heads. The
hypothetical aquifer system is formed by a number of
strata with inclined bedding planes. The angle of dip
(a) of the bedding planes with the horizontal is varied
between zero and 1V2 for various cases. The major
principal direction of anisotropy is along the bedding
plane of the strata and the minor principal direction
of anisotropy is perpendicular to it. A point source of
strength, Q [ L3T"!' | is located at the centre of the
system. The boundaries of the hypothetical aquifer
system are assumed to be at very large distances from
the source thereby extending the aquifer system to
infinite distance. Simulation of hydraulic heads are
carried out for various levels of anisotropy in the
aquifer and different orientations of the strata with
appropriate aquifer parameter values.
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Figure 2. Selected equipotential lines in: [a] an isotropic aquifer where inclination of bedding planes, a = 0 and
coefficient of anisotropy, B = 1; [b] in an anisotropic aquifer where inclination of bedding planes, a = 0 and coefficient

of anisotropy, B = 10
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Figure 3. Equi-potentials (dotted lines) in a stratified anisotropic aquifer system for different inclinations (a) of the
bedding planes (solid lines) when the coefficient of anisotropy, B=2. [a] For a=0; [b] For a=112; [c] For a=1v4; [d]
For a=172.
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Figure 4. Hydraulic potentials in an anisotropic aquifer for different coefficients of anisotropy (B) when the angle of

dip of the strata, a=0. [a] For B=2; [b] For B=4; [c] For B=7; [d] For B=10.
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Figure 5. Hydraulic potentials in an anisotropic aquifer for different coefficients of anisotropy (B) when the angle of
dip of the strata, a=1v4. [a] For B=2; [b] For B=4; [c] For B=7; [d] For B=10.
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Fig.2 compares the hydraulic head distribution in
an isotropic aquifer with that in an anisotropic aquifer
where there is a horizontal stratification. The solid
lines inside the plot indicate the stratification. The
horizontal hydraulic conductivity in both the cases is
K,=0.001 m/s. In the case of isotropic aquifer (Fig.2a),
as K and K| are equal, the equipotentials form semi-
circles around the source and radial-flow will be taking
place uniformly in all directions. However, the
hydraulic conductivity K,, orthogonal to the
horizontal hydraulic conductivity, is two orders of
magnitude smaller in the case of the anisotropic
medium. The shape of equipotentials in the
anisotropic case (Fig.2b) is semi-elliptical clearly
indicating the tendency of the flow to take place in
the least resistive direction.

Fig.3 depicts comparison of the equipotential plots
in the anisotropic aquifer system with different
orientations of the strata. The thick lines in the plot
indicate the orientation of the strata. The hydraulic
conductivity values in the principal directions and
coefficient of anisotropy, =2 are the same for all these
plots. The ratio of semimajor axis to that of semi-
minor axis, a/b is given by denominator of eqn. 30.
So, using that expression, one can estimate dip of strata,
if cofficient of anisotropy is assumed or vice versa. Here,
the effect of dip of strata on equipotential (or hydraulic
head distribution) distribution for a given 3 is clearly
seen (Fig. 3a-3d). Indirectly, this helps us visualize that
groundwater flow pattern doesn’t follow bed dips..

Fig.4 shows the equipotentials in the anisotropic
aquifer system with different coefficients of anisotropy.
The bedding planes of the strata are horizontal as
indicated by the solid lines in the plot. The coefficient
of anisotropy applied are B=2, B=4, B=7, and B=10
respectively for the cases (a), (b), (c), and (d) in Figure-
4. The equipotentials flatten as the degree of anisotropy
becomes larger in the system. Similar kinds of plots as
that of the previous one are presented in Figure-5, and
Figure-6 with different orientations of the strata. The
dips of the soil bedding are taken as a=1v4, and a=1v
2 respectively for Fig.5 and Fig.6.

The above figures represent selected cases from a
spectrum of possible combinations of coefficient of
anisotropy and orientation of bedding planes of soil
strata in a homogeneous anisotropic aquifer system
and enables to visualise the pattern of distribution of
hydraulic heads in various cases.

CONCLUSIONS
A analytical expression for hydraulic potential (or

head) distribution in homegeneous anisotropic aquifer
is developed from a similar result in d.c resistivity

method due to point d.c current source in view of
existing analogy between d.c current flow and ground
water flow under steady state conditions. Hydraulic
heads are computed in a homogeneous anisotropic
aquifer system with different coefficients of anisotropy,
and orientations of soil strata. The study demonstrates
usefulness of analytical solution in simulating hydraulic
heads in a homogeneous anisotropic aquifer.
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ANNEXURE I

Consider equation (15)

C C
= — (ALl
/X'Z X'2 X'Z
+ —_ J—

VK. K K
x vy

zz

(p:—
\/qJ2+r]2+Z2

By considering Transverse Isotropic media (T.I),
K =K =K and K_= K, eqn (Al.1) can be written
XX vy prd
as

Q, = (A1.2)

By considering eqn (16) now eqn. (17) follows.
Darcy’s law in eqn. (10) can now be expressed as
follows:

. 0
q, =-K e
0
g, = - K — (A1.3)
oy
09
* — - K
q z 2 azt

In view of equations (A1.2) and (Al.3) equations
(18), (19) and (20) follow.
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ANNEXURE II

Consider eqn. (26)

Q = CK® an "2 gin® do (A1)
! J ¢J1+(B2-1) c0s20)*? '

The above integral can be evaluated in two stages.

1. Let us consider inner integral and rewrite it with

the following change of variable, by substituting cosf=t.

Then -sin® d6=dt and upper and lower limits will be

transformed to 0 and 1 and integral can be written as

[ = ! dt
= ST D) cosg]
_ 1 ! dt
[Bz_l](sm _[ 1 e (3/2)
(B*-1]
1 t -
“Eae P g
t+ — }
. F-]
So in view of eqn (A2.2), eqn (A2.1) can be expressed as
(32)
Q= __CK2n (A2.3)
B

Equation (A2.3) is nothing but eqn. (26) in the
main text. Hence proved.



