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Imaging intra-volcanic Mesozoic sediments and shallow crustal configuration 

from traveltime inversion of long-offset seismic data in Saurashtra basin, India 
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ABSTRACT 

Saurashtra on-shore basin is considered a major Mesozoic province of India having wide-spread cover of Deccan Traps (basalts), which acts as major 

impediment for imaging deeper sub-surface geological structures for the exploration of hydrocarbons. The Mesozoic sediments hidden and entrapped within 

the basalts, as well as other subsurface geological structures, which can be distinctly imaged using the inversion of long-offset seismic traveltime data. 

Hence, the robust ray-trace inversion technique is employed for the same traveltime data along the 180 km long NW-SE trending Jodia-Ansador seismic 

profile of Saurashtra basin. This helped to image the sub-surface geological structures and shallow-crustal P-wave velocity model (𝑉𝑃) of this region. The 

𝑉𝑃 model delineated along the seismic profile has five-layers derived from the 2-D ray-trace inversion of both refraction and reflection traveltime data. The 

low-velocity-layer (LVL) Mesozoic sediments (4.2 km/s) of 0.5-1.0 km thickness is imaged, which is hidden below the high-velocity-layer (HVL) Deccan 

Traps (4.8-5.2 km/s). Below the low-velocity Mesozoic layer, another HVL (5.4-5.5 km/s) is present, which is considered as Mesozoic volcanics of Jurassic 

age having thickness variations of 0.5-1.6 km that pinches out towards Ansador. The granitic-gneissic basement (5.8-6.0 km/s) is very undulating having 

thickness variation of 2.5-3.5 km, forming horst and graben structures along the profile. Below the basement, a relatively high-velocity (6.5 km/s) layer has 

been delineated, which may be attributed to mid-crustal rocks. It is constrained to a maximum 10 km depth using long-offset seismic reflection data. There 

is significant up-warping of basement and the mid-crustal layer, which indicate complex geological and tectonic setup because of the Late Cretaceous Deccan 

volcanism and out-pouring of wide-spread tholeiitic lavas on the surface, masking the hydrocarbon-bearing Mesozoic sediments of the basin. 

Keywords: Deccan Traps, Mesozoic sediments, Long-offset seismic data, Basement, Mid-crust, Traveltime inversion 
 

INTRODUCTION 

The Deccan Traps of the Late Cretaceous age (~65 Ma), act as 

a mask for the hydrocarbon-bearing Mesozoic sediments, 

which cover significant parts of the on-shore Saurashtra basin 

in western India (Figure 1). Evidence of the Mesozoic 

sediments, hidden by Deccan basalts in on-shore Saurashtra 

basin, was confirmed from the Lodhika and Dhandhuka drilled 

wells (Figure 2) as well as the exposed Mesozoic Dhrangadhra 

sandstones towards north-eastern part of the basin (Singh et al., 

1997). To obtain spatial extension of the intra-volcanic low-

velocity Mesozoic sediment layer (LVL), CSIR-NGRI 

executed different long-offset seismic profiles along with a 

small experimental profile passing through the Lodhika well 

during 1994-1996, which was sponsored by the OIDB and 

ONGC (NGRI, 1998). The LVL hidden below the high-

velocity volcanic layer (HVL) can be detected by modeling of 

long-offset seismic data using traveltime-skip (SKIP) 

phenomena (Greenhalgh, 1977; Whiteley and Greenhalgh, 

1979; Tewari et al., 1995; Behera et al., 2002; Sain et al., 2002; 

Behera and Sen, 2014), which is mainly constrained by the 

velocity contrasts of HVL and LVL as well as the thickness of 

LVL. The 2-D ray-trace modeling and inversion technique 

(Zelt and Smith, 1992; Zelt, 1999) is employed for the seismic 

traveltime data along the 180 km long Jodia-Ansador profile 

(Figure 1) having significant SKIPs to image LVL hidden 

below the HVL layer, and to obtain other sub-surface 

geological units, granitic-gneissic basement configuration and 

the underlying shallow-crustal structure. The derived shallow-

crustal 2-D P-wave velocity model (𝑉𝑃 ) is constrained to a 

maximum of 10 km depth in the studied region of the 

Saurashtra basin, located in the western part of India (NGRI, 

1998).  

There are significant differences about the velocity and 

thicknesses of the Mesozoic sediments and basalts obtained in 

this region from the modeling and inversion of traveltime data 

(refraction and reflections) for the small experimental profile 

as well (Figure 1) that  passes  through the Lodhika well (Figure 

2), which is constrained by the well lithology (Dixit et al., 

2000; Sain et al., 2002). However earlier, Murty et al. (2016) 

has obtained two different velocity models for the same Jodia-

Ansador seismic profile from ray-trace inversion of first-arrival 

traveltime data, picked from the original monitor/paper records 

(analog data) by honoring velocities and thicknesses of the 

Mesozoic sediments obtained by Dixit et al. (2000) and Sain et 

al. (2002). Nevertheless, the thickness and velocities of the 

Mesozoic sediments as well as basalts obtained along the same 

seismic profile cannot have two different values (Murty et al., 

2016), which conflicts with each other leading to model non-

uniqueness. To ameliorate all these issues and provide a 

geologically plausible high-resolution shallow-crustal 𝑉𝑃  

model along the Jodia-Ansador profile, long-offset digital 

seismic data acquired along the profile is used for analysis,  by 

picking, modeling and ray-trace inversion. The derived 𝑉𝑃  

model is further validated by computing ray-density/hitcounts 

(Hits), model parameterizations of different velocity and 

boundary nodes along with the measure of traveltime RMS 

residuals and normalized chi-square (𝜒2)  misfit of the 

observed data (Zelt and Smith, 1992; Sain et al., 2002; Behera 

et al., 2004). The main objectives of  present study are, (i) to 

image intra-volcanic LVL Mesozoic sediments, which is 

underlain by HVL Deccan Traps, (ii) delineate sub-surface 

velocity heterogeneity, horst and graben features, basement 

configuration and shallow-crustal structure, (iii) constrain and 



Renuka Kolluru and Laxmidhar Behera   J. Ind. Geophys. Union, 29(4) (2025), 218-235  

219 

validate the 𝑉𝑃  model derived along the profile using nearby 

well lithology of the basin. 

GEOLOGY AND TECTONIC SETTING 

The Saurashtra basin belongs to an Atlantic type rifted passive 

margin basin, which is placed in the category of peri-cratonic 

rift basins of India (Biswas et al., 1993). The basin has many 

highlands of exposed basalts and rocky hillocks surrounded by 

the Gulf of Cambay in southeast, the Arabian sea in west, 

mainland of Gujarat in east and Gulf of Kutch in the north 

(Figure 1). The sequential rifting of East Africa, Madagascar 

and Seychelles has developed this basin (Biswas et al., 1993; 

Plummer, 1994). This is bounded by a major fault, which was 

earlier recognized as Kathiawar horst and later as Saurashtra 

horst. The other faults namely Cambay rift in east, Surat 

depression in south, NE-SW faulted margin of Kutch rift in 

north, and offshore shelf-facies in west, bound this basin. The 

NE-SW Delhi-Aravalli trend is an important orogenic trend, 

continues across into the Saurashtra platform. Hence, the 

structural and tectonic settings of the Saurashtra basin is 

thought to be largely controlled by this Precambrian trend. 

Regional fault trends and alignments of dyke swarms occurring 

in the southern and south-eastern parts, show preferred NE-SW 

orientations, possibly due to manifestation of the Precambrian 

basement lineaments (Biswas and Deshpande, 1983). Several 

plutonic centers occur in this area, the most important is the 

Girnar massif near Junagadh. A broad domal feature is located 

in the NE part of Saurashtra basin (Figure 1) has outcrops of 

Mesozoic sediments (Dhrangadhra and Wadhwan formations). 

The general stratigraphy of Saurashtra basin consists of 

Precambrian granitic-gneissic basement overlain by Mesozoic 

rocks, followed by the Late Cretaceous Deccan Traps with 

sporadic distribution of thin cover of Neogene and Quaternary 

sediments on the top surface (Table 1). The Deccan Traps 

(basalt) mainly cover the basin with exposed Lower Cretaceous 

sediments in NE (Figure 1). The eastern fringe of basin is a 

low-land interspersed with marshy lakes. The coastal plains 

mainly fringe the trappean highland comprising the Cenozoic 

cover of Tertiary and Quaternary rocks. There are several 

tholeiitic intrusions of acidic, alkaline, and mafic/ultramafic 

plugs present in this basin, major ones being  the Girnar, 

Osham, Barda, Alech in the western part and Vallabhipur, 

Palitana and Rajula in the south-eastern part (Merh, 1995) of 

the on-shore Saurashtra basin of India (Figure 1). 

 

 

Figure 1.  The geology map of Saurashtra basin (marked as inset within the key map) along with the NW-SE trending Jodia-Ansador and 

N-S trending Ribda-Meshpar seismic profiles. The different rock types exposed on the surface are indicated by color legends corresponding 

to their ages. The shot points (SPs) are indicated as red dots with labels along the profile, which is shown as bold black line. The drilled 

well locations of Lodhika and Dhandhuka are also marked. The Lodhika well is located on the Ribda-Meshpar seismic profile. 
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Table 1. Generalized stratigraphy of the Saurashtra basin (Modified after Merh, 1995) 

Rock/Sediment type Age 

Costal sediments, alluvium, marine sediments like 

Miliolite 

Quaternary 

Marine to fluvio marine rocks Upper Tertiary (Neogene) 

 ------------------ Unconformity  ---------- --------- Unconformity ------------------- 

Laterites Paleocene 

Deccan Traps Upper Cretaceous to Lower Eocene 

------------   Unconformity  -------------------- --------- Unconformity ------------------- 

Surendranagar and Wadhwan formations Upper Jurassic to Lower Cretaceous 

-------------- Unconformity -------------------- -----------Unconformity ------------------ 

Crystalline Basement (Granite and Gneiss) Pre-Cambrian (Proterozoic) 

 

 

Figure 2. Lithostratigraphy of Lodhika and Dhandhuka wells drilled in the Saurashtra basin (Modified after Singh et al., 1997). 

In fact, the Saurashtra basin is a horst block, surrounded by the 

major faults on its four sides. The North Kathiawar Fault 

(NKF) is located towards north and the Son-Narmada Fault 

(SNF) extends in south (Biswas, 1982). The WNW-ESE 

trending West Coast fault (WCF) system and the West Cambay 

Basin Margin Fault (WCBMF) mainly confine the western 

boundary by delimiting the eastern boundary. Three major Pre-

Cambrian trends i.e., the Dharwar trend (NNW-SSE) in 

southern part, the Aravalli trend (NE-SW) in north-eastern part 

and the Satpura trend (ENE-WSW) in central part, mainly 

coincide in the Saurashtra region (Biswas and Deshpande, 

1983). Hence, the Saurashtra horst acts as a foundered block 

among the three intersecting rifts, which lie along the major 

Precambrian trends. It is nearly a square-shaped block tilted 

towards the southwest. The straight western margin of the basin 

acts as a faulted-margin, which follows the Dharwar trend. This 

block is uplifted because the western margin fault cut across 

the Saurashtra arch (Biswas, 1987). The present structure of 

Saurashtra basin is a manifestation of numerous phases of 

tectonic alterations, including the rifting and separation of the 

Indian and African plates, segmentation of its western 

continental margin as it drifted northward, followed by the 

Deccan volcanism due to the Reunion plume (White and 

McKenzie, 1989). 

DATA 

Seismic data acquisition and pre-processing  

The long-offset seismic refraction and reflection data was 

acquired by the Controlled Source Seismic (CSS) Group of 

https://link.springer.com/article/10.1007/s12371-022-00761-1#ref-CR18
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CSIR-NGRI during 1994-96 along NW-SE trending Jodia-

Ansador profile in the Saurashtra basin (Figure 1). The data 

was recorded from 21 shot points (SPs) using two 60 channel 

DFS-V seismic data acquisition systems in master-slave mode 

with ~10 km shot point (SP) interval and geophone group 

interval of ∼100 m having 6 geophones in a group (channels) 

with natural frequency of 4.5 Hz. The sampling interval (SI) of 

the seismic data recording was kept for 4 ms with system 

dynamic range (DR) of 84 dB and wide-band frequencies 

ranging from 3 Hz to 64 Hz. A notch-filter of 50 Hz was kept 

in operation during data recording, to minimize the effect of 

power-line noise. The data was recorded by blasting each SP 

loaded with explosives of different charge sizes in pattern of 

holes drilled to maximum 25 m depth with 50 kg explosives 

put inside each hole. The charge size of each SP varies from 50 

kg to 450 kg, depending upon the maximum source-receiver 

offset and number of spreads having each spread length of 11.8 

km (NGRI, 1998). Each spread consisted of 120 geophone 

groups. For shot points SP1 to SP9, the data was recorded up 

to maximum-offset of 50 km (approximately 4 spreads) and for 

SP10 to SP21, the data was recorded with varying offsets 

(Figure 1). 

We have used the raw seismic data acquired along the profile 

(Figure 1) for pre-processing by merging the different spread 

data into individual SP gathers (supergathers). The pre-

processing steps (Yilmaz, 2001) applied to obtain individual 

SP gathers are, format conversion, sorting, merging, geometry 

application using topographical survey data, editing and 

muting of noisy/dead traces, spherical-divergence/geometrical-

spreading correction, application of field-statics for weathering 

and elevation correction, spiking-deconvolution and band-pass 

filtering (Table 2). The seismic data quality is very good having 

high signal-to-noise ratio (SNR) in which the P-wave phases 

having direct, refracted and reflected arrivals are prominent in 

the example SP gathers (Figure 3) along the profile, which are 

picked for modeling and inversion. The trace-normalized 

seismic data are displayed in reduced-time with reduction-

velocity of 7.0 km/s (Figure 3). 

Data analysis and picking 

The identification and picking of different phases in the 

observed seismic data (Figure 3) are the most important and 

crucial step for modeling and inversion. Two prominent first-

arrival or refraction phases (𝑃1, 𝑃4) and four reflection phases 

(𝑃1, 𝑃2, 𝑃3, 𝑃4) are identified in the observed seismic data as 

shown in example shot gathers (Figure 3). As we can observe 

in the data, the first-arrival phases are fairly clear at small-

offsets, but as the offset becomes large, there is greater 

uncertainty in the identification of these phases with a 

possibility of cycle-skip. We have picked both the first-arrival 

and reflection traveltimes  manually by assigning the picking 

uncertainty of ± 25 ms for first-arrivals and ± 50 ms for 

reflection phases of all the 21 SP gathers recorded along the 

profile. The picking uncertainties are generally assigned to the 

traveltime data to avoid over- or under-fitting during the 

inversion. After careful inspection of the data quality, the 

uncertainties are assigned to the data picked taking into account 

SNR and frequency content using a constant value for each 

phase (Zelt and Smith, 1992; Zelt, 1999; Behera et al., 2004). 

Since the seismic profile traverses mainly through the Deccan 

Trap covered regions of the Saurashtra basin (Figure 1), there 

is significant loss of seismic energy due to attenuation and 

absorption through the highly heterogenous and rugose Deccan 

basalts. Hence, the continuity and coherency of the first-arrival 

phases are disrupted at long-offsets. Also, we have observed 

traveltime skips (SKIP) in the seismic data at long-offsets due 

to lowering of signal amplitudes, which indicate the presence 

of low-velocity-layer (LVL) hidden below the high-velocity-

layer (HVL) basalts/traps (Figure 3). The reflection phases are 

strong and prominent at both near and long-offsets due to 

significant impedance contrast as well as amplitude build-up 

due to total internal reflections in the post-critical range 

(Greenhalgh, 1977; Whiteley and Greenhalgh, 1979; Behera et 

al., 2002, 2004, Behera and Sarkar, 2011; Behera and Sen, 

2014; Behera et al., 2021).

 

Table 2. Pre-processing flow of 2-D seismic data 

Data loading of tapes stored from DFS-V Recording System 

Demultiplexing of data (conversion of SEG-B to SEG-Y format) 

Sorting of traces for each individual FFID 

Merging of individual FFID’s to prepare individual SP gathers 

Application of field geometry for individual SP gathers 

Muting and editing of noisy/dead traces 

Spherical divergence/Geometrical spreading correction with T2V1 exponential gain function 

Application of field statics for weathering and elevation corrections (i.e., shot and receiver statics, datum statics) 

Spiking deconvolution (OL = 0.60s, PL = 0.08s, PPW = 0.1%) 

Band-pass filtering (3-8-24-60 Hz) 
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Figure 3.  Example record sections of different shot point (SP) gathers shown for data quality and the phases picked are indicated by 

colored dots representing first-arrivals (𝑃1, 𝑃4) and reflections (𝑃1, 𝑃2, 𝑃3, 𝑃4), respectively for (a) SP1, (b) SP9, and (c) SP13 along the 

seismic profile. The traveltime-skip (SKIP) is clearly observed in the example SP gathers, indicating presence of LVL hidden below the 

HVL. The SP gathers (data) are displayed in reduced-time with reduction velocity of 7.0 km/s. 
 

METHODOLOGY 

To derive P-wave velocity model (𝑉𝑃) for the Jodia-Ansador 

seismic profile (Figure 1), we have employed the 2-D ray-trace 

inversion approach of Zelt and Smith (1992) by using first-

arrival and long-offset reflection traveltime data picked for all 

the SPs along the profile. Since, there are traveltime-skips 

observed in the first-arrival data for most of the SPs, proper 

care has been taken for ray-trace inversion by constraining the 

model with nearby well lithology and previous modeling 

results in this region (Dixit et al., 2000; Sain et al., 2002; Murty 

et al., 2016; Behera et al., 2021). The effectiveness of ray-

tracing algorithm and its use in the traveltime inversion are 

strongly characterized by the model parameterization (Zelt and 

Smith, 1992). The model is parameterized by variable size 

blocks having arbitrary number and spacing of boundary nodes 

for each layer connected by linear interpolation in which the 

number and position of nodes for each boundary may differ.   

The traveltimes and their partial-derivatives with respect to the 

chosen velocity and boundary nodes are calculated during ray-

tracing along with the corresponding traveltime fit of the 

observed data and the forward response obtained for the 

starting velocity model. The model parameters are then 
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updated iteratively using the correction vector obtained from 

the damped-least-square (DLS) inversion of traveltime 

residuals. This iterative inversion process is continued until a 

satisfactory fit of the observed traveltime data and computed 

response of the model is achieved with corresponding 

normalized chi-square ( 𝜒2 ) misfit of 1.0. The ray-trace 

inversion is performed simultaneously for both velocity and 

interface boundary nodes of the model derived using first-

arrival as well as reflection traveltime data (Zelt and Smith, 

1992).

 

 

Figure 4. 1-D velocity-depth functions (right panel) obtained after the damped-least-square inversion of the observed P-wave first-arrival 

and reflection traveltime data (vertical bars) shown for selected SPs from SP1 to SP21 with the corresponding traveltime fit (solid lines) 

plotted in reduced-time of 7.0 km/s reduction velocity (left panel) for each SP. The traveltime-skips are prominent in the observed data 

indicating presence of LVL all along the profile. 

 

Figure 5. Pseudo 2-D velocity model derived by smoothly joining (dashed lines) the 1-D velocity-depth functions (solid blue lines) obtained 

for different SPs along the profile (Figure 4). The velocity-scale for each 1-D velocity-depth function is shown on the top with 

corresponding values from 3-7 km/s having small indents marked at every 1 km/s. The individual SPs are indicated as red dots with label. 

The layer numbers are indicated (1, 2, 3, 4, and 5) with the corresponding average velocity values (5.00 km/s, 4.20 km/s, 5.40 km/s, 6.00 

km/s, and 6.50 km/s) obtained for each layer from the 1-D inversion of traveltime data along the profile.  
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MODELING AND INVERSION 

1-D and pseudo 2-D modeling  

We have computed the 1-D velocity-depth functions for each 

SP along the profile (Figure 4). The 1-D velocity-depth 

functions indicate that first-arrivals have apparent velocities of 

4.8-5.0 km/s representing the Deccan Traps/basalts and 5.9-6.0 

km/s corresponding to the granitic-gneissic basement, 

respectively. The computed responses obtained from the 1-D 

velocity models are compared with the corresponding observed 

data for optimum fit along the profile (Figure 4). We observed 

that, the 1-D velocity models derived using P-wave first-arrival 

and reflection data show 4.9 km/s, 5.4 km/s, 6.0 km/s and 6.5 

km/s, respectively as the average apparent velocities for 

corresponding traveltime segments of all SPs along the profile 

at different offsets (Figure 4). The traveltime-skips as observed 

from different SPs, indicate the presence of LVL below the 

HVL. The magnitude of traveltime-skip or delay (Figures 3 and 

4) constrain the thickness and extension of the LVL along the 

profile. We could able to constrain the apparent P-wave 

velocity (4.2 km/s) and thickness of the LVL (which is 

gradually thinning towards Ansador (SW) of the profile) from 

the extent of the skip/delay in traveltime, which is of the order 

0.2 to 0.6 s (Figures 3 and 4) as observed from different SPs 

(SP1 to SP21) along the Jodia-Ansador seismic profile (Figure 

1). The apparent P-wave velocity of the LVL is constrained 

from cumbersome 1-D inversions, using the DLS layer-

stripping inversion approach (Zelt and Smith, 1992; Sain and 

Kaila, 1994; Behera et al., 2004; Behera and Kumar, 2022). 

The thickness of the LVL increases from SP1 to SP9, and 

decreases from SP10 to SP21 as constrained from the 

corresponding 1-D velocity modeling along the seismic profile 

(Figure 4). We have derived the pseudo 2-D velocity model 

(Figure 5) along the profile by smoothly joining the 

corresponding 1-D velocity-depth functions obtained at each 

SP (Figure 4), which constitute as a good starting model for the 

2-D ray-trace inversion to derive the shallow-crustal velocity 

model of the Saurashtra basin without any bias for the 

traveltime inversion. 

2-D Ray-trace inversion 

To derive the shallow-crustal 𝑉𝑃  model of Jodia-Ansador 

seismic profile in Saurashtra basin (Figure 1), we have 

employed the 2-D ray-trace modeling and inversion (Zelt and 

Smith, 1992) of first-arrival and reflection traveltime data, 

picked from all the SPs (Figure 6). The ray-trace inversion 

takes into account suitable model parameterization of each 

velocity and boundary node. Hence, both velocity and layer 

structure of the model are derived simultaneously from ray-

trace inversion of traveltime data using layer-stripping 

approach, which helps to determine deeper layers successively 

(Zelt, 1999). The inversion is an iterative process in which the 

computed responses obtained from each layer are 

superimposed on the corresponding observed data. The 

different phases have been classified and indicated by 

respective colored dots on the observed data and shown as 

vertical bars with their corresponding picking uncertainties on 

the traveltime plots (first-arrival refraction and reflections) for 

all the SPs, respectively (Figure 6). The iterative inversion is 

continued until an optimum fit is achieved between the 

observed traveltime data and the corresponding computed 

responses through the different layers of the model (Zelt and 

Smith, 1992; Behera et al., 2002, 2004; Behera and Sen, 2014; 

Behera and Kumar, 2022; Kumar and Behera, 2024). The 

model is constrained by the RMS traveltime residual along 

with the 𝜒2 misfit computed for all the SPs along the profile. 

The normalized 𝜒2 misfit can be expressed as (Menke, 1984; 

Zelt and Smith, 1992): 

 𝜒2 =
1

𝑁
∑ (

𝑑𝑚
𝑖 −𝑑𝑜𝑏𝑠

𝑖

𝜎𝑑
𝑖 )

2
𝑁
𝑖=1               (1) 

where 𝑑𝑚
𝑖  is the modeled data, 𝑑𝑜𝑏𝑠

𝑖  is the observed data, 𝜎𝑑
𝑖  is 

the standard deviation, and 𝑁 determines the total number of 

traveltime data used in the ray-trace inversion. If the value of 

𝜒2 ~ 1.0 , then the model is having good fit and can be 

acceptable. If 𝜒2  value is greater than 1.3, the model 

corresponds to under-fit, and if the value is less than 0.7, then 

it indicates over-fit. 

The ray-trace inversion is able to handle large number of SPs 

in spite of the complexity of the source-receiver spread 

configuration or quality of the data. It is essential to perform 

ray-tracing through the model with the help of efficient 

numerical solutions of 2-D ray-trace equations coupled with 

ray take-off angles (Červený et al., 1977; Zelt and Ellis, 1988). 

Besides this, we have employed the smooth-layer boundary 

simulation followed by partial-derivative computation of 

traveltime data with respect to the corresponding model 

parameters (e.g., velocity and boundary at each node) to reduce 

instability associated with the blocky model parameterization 

and the ray-trace inversion (Spence, 1984; Huang et al., 1986; 

Firbas, 1987; Lutter et al., 1990; Zelt and Smith, 1992; Behera 

et al., 2004, 2021; Behera, 2011a, b; Behera and Sen, 2014; 

Talukdar and Behera, 2018; Behera and Kumar, 2022; Kumar 

and Behera, 2024). The partial-derivatives computed 

correspond to any arrivals (e.g., refraction, reflection, head-

wave, multiple etc.) of the observed traveltime data. To avoid 

two-point ray-tracing of the algorithm, it is essential to 

interpolate the traveltimes and their partial-derivatives across 

ray end-points of the corresponding receiver locations. Finally, 

the damped-least-squares inversion is employed with chosen 

damping-factor for simultaneous modification along with 



Renuka Kolluru and Laxmidhar Behera   J. Ind. Geophys. Union, 29(4) (2025), 218-235  

225 

model-parameter update of both velocity and boundary nodes, 

respectively (Zelt and Smith, 1992, Zelt and Ellis, 1998; Zelt, 

1999; Behera et al., 2004; Behera, 2011a, b; Behera and Sen, 

2014; Talukdar and Behera, 2018; Behera and Kumar, 2022). 

During the ray-trace inversion through the model, both 

traveltime-residual vector and partial-derivative matrix are 

calculated for a specific iteration. After initial ray-tracing, we 

have computed the parameter modification vector and applied 

to the current velocity model. This is followed by ray-tracing 

through the updated model, which is continued until optimum 

fit of the observed and computed data are achieved with pre-

defined stopping-criteria (Spence et al., 1985; Zelt and Smith, 

1992; Behera and Kumar, 2022).
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Figure 6. The ray-trace inversion of P-wave seismic data (refraction and reflection traveltimes) showing rays traced through each layer of 

the final velocity model derived. The corresponding observed data and ray-trace inversion along the profile with different phases picked 

(colored dots) in the observed data (top panel) shown for representative SP gathers (a) SP1, (b) SP5, (c) SP9, (d) SP13, and (e) SP18 along 

the profile. The first-arrival refraction (P1, P4) and reflection (𝑃1, P2, P3, P4) traveltime data picked are shown as colored bars indicating 

the picking uncertainties assigned for different phases of all the SPs in the respective traveltime plots (middle panel). The corresponding 

computed responses shown as solid black line superimposed on the observed data to indicate the nature of the traveltime fit (middle panel) 

obtained by the ray-trace inversion through each layer (marked by the same layer numbers 1, 2, 3, 4, and 5 as shown in Figure 5) of the 

derived velocity model (bottom panel). The traveltime data are plotted in reduced-time with 7.0 km/s reduction velocity. The traveltime- 

skip observed in the first-arrival data for all the SPs are marked as SKIP, which indicates presence of LVL along the profile (layer number 

2) shown in bottom panel. To avoid any distortion of ray propagation and free diving of rays through the model, the maximum depth of the 
model is extended to 10 km.  
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 The corresponding final 2-D ray-trace inversion of P-wave 

traveltime data (first-arrival refraction and reflection 

traveltimes) for all twenty-one SPs is shown (Figure 7) along 

the 180 km long Jodia-Ansador seismic profile (Figure 1). The 

standard iterative forward-modeling strategy followed by the 

layer-stripping inversion approach (Zelt and Smith, 1992; Zelt, 

1999) has been incorporated for the 2-D ray-trace inversion 

using very good input starting pseudo 2-D velocity model 

(Figure 5) obtained independently from the 1-D inversion of 

corresponding P-wave first-arrival and reflection traveltime 

data (Figure 4). 

 

Figure 7. The ray-trace inversion of P-wave seismic data (refraction and reflection traveltimes) showing rays traced through each layer of 

the final velocity model derived from all the SPs (SP1 to SP21) along the seismic profile. The picked first-arrival refraction (P1, P4) and 

reflection (𝑃1, P2, P3, P4) traveltime data are shown as colored bars for all the SPs, and the corresponding computed responses indicated 

as solid black lines superimposed on the observed data to indicate the nature of the traveltime fit (top panel) obtained by the 2-D ray-trace 

inversion through each layer (marked by the same layer numbers 1, 2, 3, 4, and 5 as mentioned in Figure 5) of the final velocity model 
derived (bottom panel). The traveltime data (top panel) is plotted in the reduced-time with 7.0 km/s reduction velocity. 

Table 3. Ray-trace inversion results along Jodia-Ansador seismic profile 

 Phase Identification No. of 

Picks 

Average Picking  

Uncertainty 

(ms) 

RMS 

Traveltime 

Residual (s) 

Normalized 

𝜒2 

No. of rays 

traced through 

the model 

All 𝑃 𝑃1, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃4 12,474 41.66 0.041 1.087 12,059 

𝑃1 1 2784 25 0.023 0.994 2776 

𝑃1 2 2300 25 0.026 1.042 2290 

𝑃2 4 1293 50 0.055 0.987 1282 

𝑃3 6 2353 50 0.043 1.143 2185 

𝑃4 3 2054 50 0.047 1.096 1868 

𝑃4 5 1690 50 0.053 1.264 1658 
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The minimum-parameter 𝑉𝑃  model obtained from 2-D ray-

trace inversion of first-arrival and reflection traveltime data 

show corresponding fit of the observed data close to their 

picking uncertainties (Figure 6). The normalized 𝜒2  misfit 

parameter is used for the assessment of data fit, whose values 

should generally be close to 1.0. This indicates, the inversion 

will stop once the misfit criteria are satisfied. This is possible, 

when the observed data for all the SPs show required fit 

corresponding to their assigned picking uncertainties (Zelt and 

Smith, 1992; Zelt, 1999). The total number of P-wave data 

picks used for modeling and inversion are 12,474 (Table 3) for 

all the twenty-one SPs along the profile. We have classified the 

P-wave traveltime data picked for first-arrival phases as (𝑃1, 

𝑃4), and corresponding reflection phases as (𝑃1, 𝑃2, 𝑃3, 𝑃4), 

which are used for the ray-trace inversion (Table 3). These 

phases picked are marked with colored dots for all the SPs (SP1 

to SP21) along the profile (Figures 3 and 6) as a measure of 

data quality. The theoretically computed responses obtained 

from the final 𝑉𝑃  model is superimposed on the corresponding 

observed traveltime data (shown as vertical bars indicating the 

picking uncertainties) for each SP to demonstrate the nature of 

data fit along the Jodia-Ansador seismic profile of the 

Saurashtra basin (Figure 7). 

MODEL ASSESSMENT 

For the validation of ray-trace inversion, the important factors 

responsible for establishing the reliability of the 𝑉𝑃  model 

derived along the profile as a measure of the model assessment 

are, (i) RMS traveltime residual and normalized 𝜒2 misfit of all 

the data used in the inversion, (ii) nature of correlation between 

the observed and computed responses along with the 

corresponding traveltime misfit, (iii) ray-density/Hits as a 

measure of number of rays pass through the final velocity 

model derived (Zelt, 1999). The quantitative parameter 

estimates of the ray-trace inversion using P-wave traveltime 

data (Figures 6 and 7) are shown in Table 3 for the seismic 

profile of Saurashtra basin (Figure 1). 

Chi-square misfit 

To understand the nature of structural changes or model 

roughness as the inversion proceeds by taking into 

consideration the corresponding starting P-wave velocity 

model (Figure 5), the normalized chi-square (𝜒2) misfit plays 

very important role. The 𝜒2 has converged to 1.087 with RMS 

residuals of 0.041 s for the final ray-trace inversion (Table 3), 

which falls from very large value of 18.6 for 𝜒2  and RMS 

traveltime residual value of 0.142 s after eighteen non-linear 

inversion iterations using the correspondng trade-off parameter 

or damping factor (𝜆) of 1.0 (Zelt and Smith, 1992). 

Ray-density (Hits) 

To quantify how the rays are sampled for every cell of the 

derived 𝑉𝑃  model along the Jodia-Ansador seismic profile of 

Saurashtra basin (Figures 7), we have computed the ray-density 

or Hits of the model derived (Zelt, 1999). For the computation 

of ray-density, the cell size of the model is optimally selected 

in such a way that reasonable number of rays should pass 

through the cells. However, increase of cell size results in 

increased number of rays propagate through the cells and hence 

more Hits. However, the corresponding resolution degrades 

indicating adverse effect on the model resolution (Behera et al., 

2004). Hence, we have judiciously selected 0.5 km × 0.5 km 

cell size of velocity model (e.g., twice the horizontal and 

vertical node-spacing) for the ray-density/Hits calculation 

along the seismic profile so that moderate number of rays 

should pass through each cell (Figure 8). The Hits plot show 

the nature of ray-coverage from all the SPs having color scale 

with corresponding values of Hits (≥ 20) indicated by different 

colors (Figure 8). Thus, the shallow-crustal 𝑉𝑃  model (Figure 

9) derived from the ray-trace inversion (Figure 7) is 

constrained very well based on the nature and continuity of rays 

passing through them as shown in the ray-density/Hits plot 

along the profile (Figure 8). Hence, the ray-density/Hits plot 

provide a very good insight of the quantitative assessment of 

the rays passing through the final 𝑉𝑃  model and considered as 

one of the important tools for indirect assessment of the model 

derived (Zelt, 1999). 

SHALLOW-CRUSTAL VELOCITY MODEL 

The shallow-crustal 𝑉𝑃  model down to 10 km depth is obtained 

(Figure 9) for the 180 km long Jodia-Ansador seismic profile 

in the Saurashtra basin using 2-D ray-trace inversion (Zelt and 

Smith, 1992) of first-arrival refraction and reflection traveltime 

data (Figure 8). The total traveltime data picks of 12,474 are 

used for the inversion having RMS traveltime-residual of 

0.041 s and normalized 𝜒2  misfit of 1.087 (Table 3), 

respectively. The geologically plausible 𝑉𝑃  model (Figure 9) 

consists of five layers constrained independently from the 

corresponding 1-D (Figure 4) and pseudo 2-D velocity models 

(Figure 5). The first-layer has velocity variations of 4.9-5.1 

km/s, which is mainly related to the Deccan Traps (basalts) and 

are exposed all along the profile (Figure 1). The trap thickness 

varies from 0.7-1.4 km along the whole profile with 1.2-1.4 km 

thick cover lying between SP1-SP9 from Jodia towards Rajkot. 

From Rajkot to Atkot (between SP9-SP15), the trap thickness 

becomes thin (0.7-0.9 km) and then gradually thickens (0.9-1.1 

km) from Atkot towards Ansador (between SP15-SP21). The 

second layer present below the HVL Deccan Trap is a LVL 

constrained from the traveltime-skip phenomena using the 

inversion of first-arrival traveltime data (Greenhalgh, 1977; 

Whiteley and Greenhalgh, 1979; Sain and Kaila, 1994; Behera 

et al., 2002, 2004) along with corresponding reflection 

traveltime for all the SPs using rigorous DLS 1-D inversion 

(Figure 4) followed by pseudo 2-D modeling (Figure 5) and 2-

D ray-trace inversion (Figures 6 and 7) along the profile. The 

4.2 km/s velocity obtained for the LVL strongly correlate with 
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the nearby studies of this region having constrain from the 

Lodhika well (Dixit et al., 2000; Sain et al., 2002) and Murty 

et al. (2016), which is confirmed as the Mesozoic sediments 

hidden below the HVL Deccan Traps. The thickness variation 

of LVL Mesozoic sediments is constrained as 0.5-1.3 km, 

which is thinning towards Ansador along the profile (Figure 9). 

Below the LVL Mesozoic sediments, we have delineated 

another HVL in which velocity varies from 5.40-5.55 km/s. 

This HVL may be inferred as Mesozoic volcanics/Tuff as 

confirmed from the nearby Lodhika and Dhandhuka well 

lithology (Figure 2). The Mesozoic volcanics has thickness 

variations of 0.5-1.8 km with maximum thickness attained 

within 0-90 km profile distance and then gradually becomes 

thin towards Ansador (0.5-1.0 km) along the profile (Figure 9). 

This layer has been modeled based on the later-arrival 

reflection phases (𝑃3), which are observed prominently in the 

record sections (Figure 6) with the corresponding ray-trace 

inversion of different SPs along the profile (Figure 7). The 

velocity of the layer below the Mesozoic volcanics varies from 

5.9-6.1 km/s (Figure 9), which can be considered as the 

granitic-gneissic basement constrained from the refraction (𝑃4) 

phase (Figures 6 and 7). The basement is very shallow (2.0-2.2 

km) towards SE of the profile correlating the nearby 

Dhandhuka well (Figure 2) and deepens to 4.0 km depth 

towards NW forming horst and graben structure. The thickness 

of the granitic-gneissic basement varies from 3.0-4.0 km 

constrained from the ray-trace inversion of reflection phase 

(𝑃4) observed from all the SPs along the profile (Figures 6 and 

7). The velocity of 6.5 km/s is fixed for the layer lying below 

this basement, which can be inferred as the rocks of mid-crust 

or intermediate-crust situated at a shallow depth of 6.0 km due 

to significant upwarping of the crustal column (Pandey, 2020) 

as a result of the Reunion mantle plume interaction and impact 

of the 65 Ma Deccan volcanism. 

 

 

Figure 8. Ray-density or Hits plot of the P-wave velocity model (𝑉𝑃) with respective color scale representing number of rays passing 

through the chosen cell size (hit counts). The regions not sampled by rays are shaded in gray color, and SPs are shown as red dots with 

label along the seismic profile. 

 

 
Figure 9. The final 𝑉𝑃 model obtained along the NW-SE trending Jodia-Ansador seismic profile in the Saurashtra basin of India using the 

2-D ray-trace inversion of P-wave first-arrival seismic refraction and reflection traveltime data (Figure 7). The SP locations along the 

profile are marked as red dots on the top of the model with corresponding label, and the velocity variation is shown in color scale along 

with corresponding average velocity values (5.90 km/s) indicated for each layer. 
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RESULTS AND DISCUSSION 

The shallow-crustal 𝑉𝑃  model obtained for the NW-SE 

trending Jodia-Ansador seismic profile in the Saurashtra basin, 

which is highly heterogeneous having horst and graben 

structures, is constrained to a depth of 10 km. The intra-

volcanic Mesozoic sediments (Figure 9) are masked by 

ubiquitous spread of thick Deccan Traps all along the profile 

(Figure 1), which are exposed in an area of 5000 sq. km. 

towards NE of the Saurashtra basin (Figure 1). They are mainly 

Lower-Cretaceous older Dhrangadhra sandstones and younger 

Wadhwan formations confirmed from the lithology of both the 

nearby Lodhika and Dhandhuka wells (NGRI, 1998; Dixit et 

al., 2000; Sain et al., 2002). The Dhrangadhra formations 

mainly comprises of felspathic sandstones, fine-grained 

argillaceous sandstones, quartzites, sandy shale and clay with 

occasional thin coal bands. These formations are considered as 

suitable for reservoir rocks, being porous and permeable. On 

the other hand, the Wadhwan formations overlie the 

Dhrangadhra formations conformably (Srivastava, 1963, 

1968), but according to Chiplonkar and Badve (1975), the 

formations lie unconformably. The formation is well exposed 

towards NE part of executed seismic profile (Figure 1), which 

was mapped by Fedden (1884) for the first time and named 

them after the town of Wadhwan around which they are well 

exposed. This formation is further divided into Surendranagar 

sandstones and Malachimata/Chamraj formations. Singh et al. 

(1997) has mentioned in their studies that Mesozoic sediments, 

in general, exhibit poor organic richness and having poor 

source rock potential. However, the upper Dhrangadhra 

sediments display moderate organic richness along with fair 

gas-prone source rock potential at selected intervals. The oil-

window zone has been demarcated between 1650 m to 3230 m 

in top most upper Dhrangadhra and Lodhika formations 

(Figure 2), respectively (NGRI, 1998). In the other borewell at 

Dhandhuka (Figure 2), below 80 m column of Tertiaries, a 505 

m thick column of trap was encountered followed by 

Cretaceous formations (205 m), volcanics of 490 m, Jurassic 

formations of 80 m and then basement (granites and gneisses) 

at a depth of 1300 m, which is closely correlated with our 

results obtained along the profile towards Ansador (Figure 9). 

The parametric Lodhika well drilled near Rajkot (Figure 2) has 

revealed in detail the geological setup for the subsurface 

Mesozoic sediments along with their depositional 

environment. The oldest formation in the subsurface sequence 

of Lodhika comprises tuff and amygdaloidal basalt and has 

been designated as Lodhika formation. The overlying 

Dhrangadhra formation includes two members, the lower one 

characterized by rudaceous sediments and claystone, while the 

upper member is represented by alterations of sandstone and 

claystone. The Lodhika formation and lower member of 

Dhrangadhra formation is confined to only subsurface and are 

not exposed anywhere in the Saurashtra basin. The 

Dhrangadhra formation grades up into Wadhwan formation, 

which is dominated by claystone and mature quartz arenite. 

Deccan Trap flows of 1350 m thickness cap the Wadhwan 

formation. The depositional formations have been interpreted 

that the Lodhika formation came into existence under an 

eruptive igneous regime concomitant with the initiation of 

rifting, which was followed by the development of horst and 

graben structures (Figure 9). The subsequent deposition of 

lower Dhrangadhra member took place under lacustrine and 

alluvial fan regime, whereas upper Dhrangadhra member was 

deposited under distal alluvial fan, braided stream, channel 

sand and marshy environments along with the advancement of 

rift. The lithological succession of Wadhwan formation 

represents meandering channel over the suitable continental 

crust. The Deccan Trap eruption over the Wadhwan formation 

led to an end of the sedimentation in this area (Figure 1). The 

Mesozoic sediments have been imaged all along the profile 

having 4.2 km/s velocity with thickness variations of 0.5-1.3 

km that sandwiched between exposed Deccan Traps and 

underlying the older Mesozoic volcanic flow, which also 

strongly correlate with the results obtained by Sain et al. (2002) 

in this region from another small 45 km long seismic profile 

passing through the Lodhika well. The derived 𝑉𝑃  model 

clearly demonstrate the presence of LVL Mesozoic sediments 

hidden below the Deccan Traps has potential for hydrocarbon 

accumulation, which is also confirmed from the nearby drilled 

wells of Lodhika and Dhandhuka (Figure 2). 

The Deccan Traps in the Saurashtra basin is characterized by 

large number of dykes, volcanic and plutonic centres, the major 

ones being Girnar, Osham, Alech, Barda and Chogat Chamardi 

(Merh, 1995). These hills comprising the Deccan basalt 

eruptions and intrusions seem to be arranged in a broad arcuate 

outcrop, concave northward (Figure 1). The continuity and 

extent of thick (0.7-1.4 km) HVL Deccan Traps lie both 

laterally and vertically along with ubiquitous presence in the 

Saurashtra basin indicating large-scale volcanic activity with 

outpouring of tholeiitic flood basalts or lavas during the 

Deccan volcanism (~65 Ma), when Indian plate was located 

above the Reunion plume and subsequent rifting of Seychelles 

from Indian plate. The Mesozoic volcanics (older basalts) 

underlying the Mesozoic sediments play very important role 

for making a channel for the deposit of the intra-volcanic 

sediments without any dispersal and acts as a major reservoir 

rock potential for the hydrocarbon exploration in this region. 

The crystalline granitic-gneissic basement (5.9-6.1 km/s) is 

highly undulating having horst and graben structures that 

indicate large-scale tectonic activity with significant 

upwarping and presence of mid-crustal rocks (6.5 km/s) at very 
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shallow depth of 6.0 km. The intense tectonic activity has 

resulted in the presence of deep-basinal faults controlled by the 

horst and graben structures and significant upwarping within 

80-140 km segment of the profile towards Atkot and 

depressions towards Jodia and Ansador (Figure 9). 

CONCLUSIONS 

Based on the 2-D ray-trace modeling and inversion of seismic 

refraction and reflection traveltime data along the 180 km long 

NW-SE trending Jodia-Ansador seismic profile in the 

Saurashtra basin of India, the following conclusions are drawn.  

(i) The top layer is mainly covered with highly heterogeneous 

and rugose Deccan Traps, which extends to maximum depth of 

1.4 km with velocity variations of 4.9-5.1 km/s along the 

profile, that obscure and mask all the subsurface geological 

features.  

(ii) The LVL intra-volcanic Mesozoic sediments (4.2 km/s) 

delineated from the traveltime-skip phenomena, are hidden 

below the HVL Deccan Traps and sandwiched above the 

another high-velocity (5.4-5.55 km/s) Mesozoic basaltic layer, 

may play an important role in the accumulation of 

hydrocarbons. This LVL has been constrained from the nearby 

Lodhika and Dhandhuka wells drilled by ONGC as parametric 

wells for the hydrocarbon exploration in the Saurashtra basin. 

The Mesozoic sediments are exposed in the NE part of the 

basin as Dhrangadhra and Wadhwan sandstone formations. 

(iii)  The crystalline basement is mainly granitic and gneissic 

in composition with velocity variations of 5.9-6.0 km/s, which 

is highly undulating forming horst and graben structures, 

attains maximum depth of 4 km near Jodia. It is constrained by 

deep-basinal faults with significant upwarping near Atkot and 

gradually shallowing to 2 km depth towards Ansador along the 

profile. 

(iv)  The high-velocity (6.5 km/s) mid-crustal rocks are 

imaged at very shallow depth of only about 6.0 km with 

significant upwarping correlating the basement geometry and 

may be  due to complex tectonic activity and impact of Deccan 

volcanism in this region. 

(v) The 𝑉𝑃  model derived to a maximum depth of 10 km has 

been constrained from model parameterizations, RMS 

traveltime residuals, normalized 𝜒2 misfit, ray-density or Hits 

as well as nearby well lithology of the study region.  
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ABSTRACT 

Mineral exploration is a vital activity for the sustainable and economic development of any region. This study focuses on the Jashpur and Raigarh districts 

of Chhattisgarh state in India. We integrate geology, electrical tomography, resistivity, induced polarization (IP) and Geographic Information Systems (GIS) 

to identify high potential zones of hydrothermal gold deposits. We followed a data driven approach that utilizes multiple data sets pertaining to geological, 

geochemical and geophysical studies. These data sets in the Analytic Hierarchy Process (AHP) were utilized to provide weights to various evidence layers 

through expert judgment and literature review. The weighted layers were combined to generate mineral prospective maps, which identified areas with 

significant economic potential. This study demonstrates the effectiveness of integrating state-of-the-art electrical tomography method and GIS in mineral 

exploration by providing a robust framework for identifying economically viable gold and other sulphide mineral deposits. Mineral Prospect Map (MPM) 

indicates that 130.40 sq. km area comes under  the class of high mineralized zone. The results contribute to the sustainable development of the Jashpur and 

Raigarh districts, offering valuable insights for mineral resource management and exploration strategies.  

Keywords: Chhotanagpur Gneissic Complex, Electrical resistivity tomography, Time domain IP, Mineralization, Chhattisgarh, India 

INTRODUCTION 

Finding new mineral deposits and utilising prospective zones 

within the region of interest for economic and sustainable 

growth, is a major motive in  mineral exploration (Haldar, 

2018). There is hidden information on geo-evidential features, 

which are considered indicators for exploring appropriate 

minerals and deposit types. Complexity arises due to the wide 

variety of geological processes, large spatial areas involved and 

the need to interpret data both from the surface and subsurface 

findings (Mansouri et al., 2017). Mineral potential mapping in 

recent years has been categorised as either data driven or 

knowledge driven (Pradhan et al., 2022; Zuo et al., 2023). A 

knowledge driven approach was used for this study. Multiple 

data sets or maps are required to be collected, analysed and 

integrated for mineral prospective mapping (MPM) in the 

region of interest to identify mineral-rich zones.  

Present  study aims to determine high potential zones of 

hydrothermal gold deposits in the Jashpur and Raigarh districts 

of Chhattisgarh in India, where many previous studies have 

also been done. For example, Geological Survey of India 

(GSI), Geomysore Services and MECL, explored gold as a G3 

reconnaissance survey. Dora (2014) also studied ten different 

sites from Bastar craton for PGE mineralisation. Similarly,  

Kumar et al. (2017) studied and reported positive IP results and 

GSI also reported gold mineralisation around the study area 

(Kalsotra and Narang, 1983).  An Analytic Hierarchy Process 

(AHP) method was applied to determine the weights of five 

different evidential layers, obtained from geological and 

geochemical studies as well as literature review, to demarcate 

high and economically explorable gold deposits. Prospectivity 

maps were created by merging the weighted evidential layers 

using the AHP technique (Du et al., 2016). As such, present 

study integrates high resolution electrical resistivity, IP 

tomography geophysics and GIS data to demarcate the mineral 

potential zones. State-of-the-art electrical resistivity 

tomography (ERT) and induced polarisation (IP) geophysical 

methods were used to study in detailed the subsurface 

geological structure(s) and mineralised zones within the rock 

mass of a geological setting in the study area. Subsequently, 

ERT and IP results were used to validate the mineral 

prospective map (MPM) as obtained in the present study. 

STUDY AREA, GEOLOGY AND DRAINAGE SYSTEM 

The study area falls in Jashpur and Raigarh districts of 

Chhattisgarh state, India (Figure 1). This study region is 

enriched with different types of mineral deposits and also 

known for its complex geological formations. It has a long 

history of mineral exploration activities. The geographic 

coordinates of the study area are 22°17' to 23°15' N and 83°30' 

to 84°24' E . It falls in toposheets 64N/10, 64N/11, 64N/14 and 

64N/15. The study area comprises different geological features 

like, fractures, faults, lineaments and dykes (Figure 2). It 

exposes  Precambrian rocks, represented predominantly by 

biotite granites and gneisses with xenoliths of older 

metamorphic and basic rocks, which  are  traversed by quartz 

veins (Kalsotra and Narang, 1983; Kumar et al., 2017) (Figure 

3). It is also comprised of Lower Gondwana and Chhotanagpur 

gneissic complex rocks (Figure 3), exposed along an E-W belt 

and have numerous stringers and veins of quartz traversing 

mostly in NW-SE, NE-SW and E-W directions. Pegmatites, 

meta basic dykes, aplite veins, basic dykes and quartz veins are  

also  found  in the study area (Choudhary, 1969; Mishra et al., 

2008).  

The study area comprises undulating topography with 

numerous knolls, hillocks and linear ridges rising over a 

general level of 365 m above mean sea level. Ib and Maini 
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rivers are the most important water channels in Jashpur district, 

which drains from north to south in the study region. Both river 

have their source in the Khuria highlands in the north.  

The Maini river is flowing south-easterly in the western part 

and north-eastern in the eastern part with numerous meanders 

and thus forms the chief drainage system of the area. It is a 6th 

order stream along with a number of 4th and 3rd order streams 

joining it from north and south direction.

 

 

Figure 1.  Location of study area showing electrical tomography sites in Jashpur and Raigarh districts of Chhattisgarh state.  

 

Figure 2. Structural map of the study area showing location of dykes, structural and geomorphic lineaments.  
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Figure 3. Detailed geological map of the study area along with the location of ERT sites. 

METHODOLOGY 

Electrical tomography  

Electrical resistivity and induced polarization (IP) surveys 

were performed using a gradient array to acquire subsurface 

resistivity and chargeability in order to know the variations of 

the rock mass in terms of resistivity and chargeability property 

in the present geological setting. Electrical Tomography data 

were collected at 7 different sites (Figure 1) using the state-of-

the-art 4-channel ABEM Terrameter LS equipment® (ABEM, 

2012). Good quality dataset  are collected for mapping 

mineralization. IP survey resulted in chargeability, that  acts as 

a prominent indicator for mineral deposition, which aids along 

with the resistivity in the detection and evaluation of sulphide 

minerals associated with gold deposits (Kumar et al., 2017, 

2022). 

GIS approach 

In the present work, we used different thematic maps namely 

lithology, structural discontinuity, distribution of pathfinder 

elements in stream sediments, dykes and their lithology for 

detailed analysis of  mineralization. The stream network 

(Figure 4a) was extracted from the DEM file in ArcGIS for 

further analysis. This stream network was used for network 

analysis and traced upstream to find source rock regions to 

demarcate high mineral prospect areas. The GIS algorithm is 

used to calculate the drainage network. For the drainage 

network analysis, Shuttle Radar Topographic Mission (SRTM) 

Digital Elevation Model (DEM) was used. The flow direction 

was estimated using a slope, while stream network analysis can 

be estimated from a drainage network together with flow 

direction. 

Stream sediment sampling data contains all types of elements 

present in the sample (Figure 4b), which gives the regional 

geochemistry of the study area. This data has been used to 

understand the geochemical background. Further, stream 

sediment sampling data is used for preparing anomaly maps of 

pathfinder elements. The stream sample points were 

interpolated to prepare the anomaly map using the Inverse 

Distance Weighted (IDW) interpolation method in ArcGIS ( 

Cheng et al., 1994; Cheng, 1999) (Figures 5 and 6). This 

method uses precious elements, which are used as pathfinders 

for gold mineral deposits which are Te, As, Sb, Ag, Bi, Cu, Mo 

and Zn (Bullock et al., 2017; Barnes, 2018; Ge et al., 2023). 

IDW interpolation of Au, Te, As and Sb as a pathfinder for gold 

deposit is shown in Figure 5. The thematic map resulted from 

the intersection area between dyke buffers and river buffers 

with a 1000 m buffer to both the features, is shown in Figures 

5 - 7.    
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Figure 4. (a) River and stream network within the study area. (b) Stream sediment sampling locations. 

 

 

Figure 5. Inverse Distance Weighted (IDW) interpolation of Au, Te, As and Sb pathfinder element in the study area. 
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Figure 6. Upstream traced network from high anomaly zones to possible source rocks (left panel) and Inverse Distance Weighted (IDW) 
Zn anomaly (right panel) in the study area  

 

 

Figure 7. The intersection of intrusive body and river buffer in the study area.
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In addition, vector input layers namely lithology, structural 

discontinuity, upstream traced river network and buffers 

(Figures 2-7) were converted into grid and resampled, using 

Quantum Geographic Information System (QGIS) and  then the 

grid cells of the input thematic layers was resized. Thereafter, 

reclassification using GRASS reclass algorithms was carried 

out to put all the factor classes. This reclassification to a scale 

of 1 to 5 was made to harmonize the results so obtained. This 

was the final input, which was then subjected to Weighted 

Overlay Analysis (WOA). The final consistency ratio (CR) is 

obtained by the ratio of the consistency index (CI) to the 

random index (RI)  following  Saaty (1977). The CR ratio 

indicates the level of consistency that is expected when 

randomly completing reciprocal matrices using values on a 

scale of 1-9. It is used to determine whether the evaluations are 

adequately consistent or not. The value of 0.1 is considered to 

be the maximum acceptable limit for CR. If the final CR 

surpasses this threshold, the review process must be repeated 

in order to enhance coherence of the evaluation. 

Weighted Overlay Analysis (WOA) 

The weighted overlay analysis is a modelling method for 

constructing an integrated map by merging the geometry and 

characteristics of every related geological layer in a GIS 

environment (Ramadhani Mussa et al., 2020). Weighted 

overlay analysis is applied to achieve a cumulative possibility 

model that represents the potential mineral zones in a given 

region as a result of the selected parameters and their 

corresponding groups. A comprehensive literature review was 

conducted, to ensure the accuracy and objectivity of the 

ranking. In pairwise comparison, matrix parameters were 

ranked on a scale from 1 to 9. For equal influence 1 and as the 

influence of other parameters decreases, the scale shifts 

towards a higher number. All thematic maps (Table 1) were 

used for WOA. For WOA, we assigned weightage based on the 

literature review. Within the thematic map, all classes were 

classified in the range of 1-5 based on their importance and 

correlation with gold mineralization (Rahmati et al., 2015; 

Ibrahim-Bathis and Ahmed, 2016; Andualem and Demeke, 

2019; Abijith et al., 2020).  

Additionally, the Multicriteria Decision Analysis (MCDA) 

method is also integrated for preparing mineral prospect maps. 

It provided unbiased decisions about the highest possibility of 

mineralization based on all 5 factors considered in the study 

(Table 1). In this process, we did a pairwise comparison matrix 

(Table 2). Ultimately, the value of each cell in the input raster, 

was multiplied by the normalized weighted values of each 

raster layer. This process finally resulted in the calculation and 

the evolution of the mineral prospect map (MPM). The 

computations were performed using the raster calculator tool 

within the ArcGIS environment.

 

Table  1. Thematic maps and their priority with ranks 

Category  Priority (%) Rank 

Lithology (1) 34.2 1 

Lineament (2) 29.2 2 

IDW (3) 13 4 

Intersection (4) 15 3 

Dyke buffer (5) 8.6 5 

 

Table 2. Comparison matrix of various thematic maps  

Thematic Maps 

Lithology 

(1) 

Lineament 

(2) IDW (3) 

Intersection 

(4) 

Dyke 

buffer (5) 

Lithology (1) 1.00 1.00 3.00 2.00 5.00 

Lineament (2) 1.00 1.00 3.00 2.00 2.00 

IDW (3) 0.33 0.33 1.00 1.00 2.00 

Intersection (4) 0.50 0.50 1.00 1.00 2.00 

Dyke buffer (5) 0.20 0.50 0.50 0.50 1.00 
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RESULTS 

Interpretation of electrical tomography models at different 

sites 

(i) Tamamunda  

The resistivity at Tamamunda site show large resistivity 

contrast from 20–13,300 Ohm.m (Figure 8a), suggesting 

diverse mineralogical composition within the subsurface rocks. 

Whereas, the chargeability varies from 1.5 – 12 mV/V (Figure 

8b). A thick weathered layer 15 m with a resistivity <100 

Ohm.m is seen  in the near surface zone (Figure 8a). The model 

resistivity indicates high resistivity granitic-gneissic rocks as 

basement, followed by uniform high resistivity at deeper 

depths. This resistivity model also indicates the presence of a 

uniform resistivity body (igneous intrusive structure) (Figure 

8a). Towards northern and southern side,  the model revealed 

high chargeability 8.42 mV/V anomaly between 20 to 40 m 

depth (Figure 8b) corresponding to moderate resistivity  1433 

Ohm.m at the same depths (Figure 8a). Hydrothermal fluid 

deposited in the bedrock cracks and the mineralisation have 

resulted in moderate chargeability, which is also ascribed to the 

concentration of low-grade minerals. In contrast, from north to 

south, it shows low chargeability variation (Figure 8b). 

(ii) Majiamha 

The resistivity model indicates weathered rock with an average 

thickness of 20 m towards the eastern end of the profile, which 

shows low resistivity <100 Ohm.m (Figure 9a). Further, from 

20 m to deeper depths, hard rock is mapped till 131 m depth 

(Figure 9a). Two prominent low resistivity anomaly from the 

middle to the western end of the resistivity model, indicates 

highly fractured rock mass due to the intense rock fracturing 

(Figure 9a). We can further see a low IP zone corresponding to 

the same low resistivity anomaly indicating water saturated 

fractured zone within the rock mass. 

The resistivity model also indicates granitic plutonic intrusion 

from the deeper depths (Figure 9a). Very high chargeability is 

seen at the right corner towards east end but at deeper depths 

from 100 to until 131 m depth the chargeability is >11 mV/V 

(Figure 9b). This site is foliated geologically. Compositionally, 

hard bedrock is granodiorite. From the lateral distance 160 m 

away from the west end of the profile, it shows very high 

contrasting resistivity from the near surface layers to bottom 

131 m depth (Figure 9a).  A zone of low resistivity <600 

Ohm.m and low chargeability up to 1 mV/V, indicate 

weathered rock mass (Figure 9 a, b).

 

Figure 8. (a)  2D inverted resistivity model with two high resistivity bodies separated by a comparatively low resistivity zone, showing a 

resistivity contrast of ≥3000 Ohm.m. (b) Chargeability model depicting a large variation in chargeability from 3 to 7 mV/V just below the 
low resistivity anomaly at the Tamamunda site. 
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Figure 9. (a)  2D inverted resistivity model showing distorted geological structure with a large resistivity contrast of ≥10,000 Ohm.m at 
Majiamha site. (b) Chargeability model with a contrasting chargeability anomaly from west to east at the  same site. 

 

Figure 10. (a)  2D inverted resistivity model depicting homogeneous variation in lithology from west to east  at Banagaon. (b) Chargeability 

model showing a high anomalous chargeability variation in the near surface layers up to 20 m depth.  Below this depth, it shows 
homogeneous variation and low chargeability. 
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(iii) Banagaon 

The resistivity model depicts that the top 20 m is a highly 

weathered rock with a resistivity of <50 Ohm.m. The model 

resistivity varies from 10 to 18,000 Ohm.m (Figure 10a). This 

indicates that the basement rock at this site differs from the 

other sites and may consist of metabasalts as the basement. The 

resistivity model indicated a gradual variation in resistivity all 

along the profile (Figure 10a), which indicates stratified 

structure and homogenous lithological variation. This suggests 

that the basement rock at the deeper depths have high resistivity 

and low chargeability (Figure 10a, b). Nevertheless, 

chargeability model revealed two highly contrasting anomalies 

below 80 m and 240 m lateral distances and show chargeability 

values of 7- 8 mV/V and 8 – 9 mV/V respectively. These highly 

anomalous values of chargeability indicate the mineral deposit 

signature at shallow depths up to 20 m (Figure 10b).    

 (iv) Surangpani 

The resistivity model clearly indicates the presence of an 

intrusive body or faulted structure from both sides around the 

center of the profile (Figure 11a). Fractures are mapped on both 

sides around the center of the profile (Figure 11a).  Further, the 

chargeability model indicates gradual change in IP values 

(Figure 11b). Sharp resistivity changes are seen around the 

center of the resistivity profile while no significant change is 

noticed in IP model (Figure 11a, b). The basement rock with 

resistivity >4920 Ohm.m, possibly represents granodiorite rock 

at the deeper depths on either side of the faulted structure 

(Figure 11a). 

MINERAL PROSPECT MAP (MPM) 

The   derived mineral prospect map can be divided into five 

classes based on the probability of the economic presence of 

mineral(s)/ ore deposits in the area. They are: (i) very low, (ii) 

low, (iii) moderate, (iv). high and (v) very high (Figure 12). Out 

of the total prospected 4864.285 sq. km area, 7.46 sq. km area 

is covered by a very high prospecting zone in terms of mineral 

deposits. In comparison, the other divisions having very low, 

low, moderate and high are respectively occupied by 4509.58, 

166.55, 46.49 and 130.40 sq. km area. This would indicate that 

major area are occupied by very low and low classes of 

deposition. Mineral prospects are high near the significant fault 

zones and lineament structures due to the favourable tectonic 

setting for hydrothermal mineralization. The area has shown a 

few pockets of very high mineralisation due to favourable 

conditions, like country rocks, lithology of surrounding rocks, 

age of formation and tectonic setting, which plays a significant 

role in mineral deposition (Figure 12). Geochemical analysis 

of stream sediments also gives the physical presence of 

minerals.

 

Figure 11. (a) 2D inverted resistivity model with a faulted structure on either sides around the center of profile thereby depicting two high 

resistivity bodies separated by a low resistivity zone at Surangpani. (b) Chargeability model showing gradual variation in chargeability all 
along the model.  
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Figure 12.  Derived mineral prospect map of the study area. 

DISCUSSION 

The study exemplify that the buffer of selective river networks 

indicates the high probability of the presence of source rock for 

pathfinder minerals within the buffered areas for 

mineralization. During the geological period, the source rocks 

get eroded and transported through the river networks. By 

tracing them back upstream, we get source rock and within this 

region also demarcated quartz dykes, which are primary 

suspects of our study contributing sediments to this river 

network. As a buffer of selective river networks and dykes 

intersects, those areas have high potential and the intrusive 

dykes can have high mineral potential. These results are 

validated from the resistivity and IP tomography model results  

that show significant variation both in resistivity and 

chargeability anomalies. The study area is classified as a 

limited zone for massive mineralization while in the 

disseminated form, high prospects for mineralization are 

mapped based on high resolution geophysics results along with 

the mineral prospect map. Further, it is suggested that only a 

few intrusive bodies contain gold minerals, including those 

with common intersections within the selective river buffers.  

CONCLUSIONS 

Distinct conducting anomalies are seen in the study area, which 

indicate the potentiality from low to very high concentration of 

mineral deposits in disseminated form. The chargeability varies 

from 0.44 to 14 mV/V while the resistivity contrast ranges 

between 10 to 25000 Ohm.m. The model results from 

chargeability, indicated disseminated sulphide mineral deposits 

within the host rock with varying mineral concentrations and 

metallic character. The resistivity tomography results clearly 

depicted the structural control for mineral deposits and 

illustrated the subsurface geological structures based on large 

resistivity contrasts. It is thus necessary to target faults, 

lineament and dykes for prospect gold exploration. Electrical 

resistivity tomography has the advantage to delineate both 

conductive and non-conductive subsurface geological 

formations within the study area, which is very crucial for 

knowing the mineralized zones. Nevertheless, integrating and 

correlating the results of resistivity and chargeability 

tomography models together, we achieved comprehensive 

understanding of the subsurface mineralization pockets at 

various locations and the anomalous zones signifying mineral 

deposition. On the other hand, the mineral prospect map has 

given an idea about the gold concentration based on 

geochemical and geophysical data analysis. 
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ABSTRACT 

The Indian Ocean, a vital part of the world's climate system, influences both local and global environmental trends. Dissolved Oxygen (DO), Sea Surface 

Temperature (SST) and Sea Surface Salinity (SSS) in the northern Indian Ocean, are three crucial oceanographic parameters that provide a comprehensive 

temporal and spatial analysis. The main goal is to examine environmental trends and variability in this region, shedding light on the potential impacts of 

anthropogenic activities and climate change. Using data from the Copernicus Marine Environment Monitoring Service, with resolution of 0.25°, spanning 

from 1998 to 2020, we aim to understand the physical and biogeochemical dynamics of the Arabian Sea and the Bay of Bengal. The analysis reveals 

significant temporal and regional patterns in DO, SST, and SSS across the Indian Ocean basin, including clear seasonal variations, temporal long-term 

trends, and notable annual cycles. Variations in DO concentrations underscore the vulnerability of marine life to hypoxic or anoxic conditions, which 

could negatively affect biodiversity. Our results and statistical analyses emphasize the critical importance of ongoing monitoring and research in the 

northern Indian Ocean to understand the environmental changes occurring in this region. This study provides valuable insight into the intricate interplay of 

environmental trends and variability through a detailed examination of the temporal and spatial dynamics of DO, SST and SSS in the Northern Indian 

Ocean. It highlights the urgent needs for proactive measures to mitigate the impacts of climate change and human activities on this essential marine 

environment. 

 

INTRODUCTION 

Over the past few decades, global warming has significantly 

impacted weather, climate, human society and the economy 

(IPCC, 2018). Understanding the dynamics of critical oceanic 

parameters in these regions is essential for grasping their 

complex interactions and ecological processes. SSS, SST and 

DO are fundamental parameters that greatly influence the 

physical and biological properties of these oceanic areas 

(Smith et al., 2020). Detailed long-term studies of dissolved 

oxygen concentrations in the ocean, reveal a steady decline 

over the 50 years (Bushinsky and Emerson, 2018; Schmidtko 

et al., 2019). Decreasing DO levels are particularly evident in 

coastal oceans, leading to the proliferation and expansion of 

'dead zones'. The oxygen cycle is associated with changes in 

ecosystem dynamics, nutrient availability and ocean 

circulation by global climate models (Emerson and 

Bushinsky, 2014).The loss of DO can have far-reaching 

consequences, affecting pelagic and benthic fisheries, 

tourism, ocean nutrient cycling, and the oceanic production of 

N₂O, a potent greenhouse gas. 

The ocean obtains DO primarily through air-sea gas exchange 

and photosynthesis. DO is a critical parameter for marine 

organisms, as it reflects the availability of oxygen in seawater 

and is essential for their respiration and metabolic processes. 

The Arabian Sea and the Bay of Bengal, exhibit significant 

temporal and spatial variations in dissolved oxygen due to 

several factors. Subsurface dissolved oxygen is advected via 

water mass distribution pathways and mixed into adjacent 

water masses. Other contributing factors include surface 

solubility (affected by warming), decreased ventilation (due to 

increased stratification), and enhanced deep ocean respiration 

(driven by higher surface primary production and increased 

particle flux), all of which can result in de-oxygenation(Diaz 

and Rosenberg, 2008; Keeling et al., 2010; Peña et al., 2010). 

Physical, chemical and biological variables also play a crucial 

role in the dynamics of DO (Menzel and Spaeth, 1962). These 

include ocean currents, temperature, salinity, nutrient 

availability and biological productivity. Large-scale 

variability in seasonal average atmospheric inputs is reflected 

in the temporal and spatial variability of sea surface 

temperature, sea surface salinity and dissolved oxygen. Lower 

sea-surface oxygen concentrations, reduced mid-water 

ventilation due to ocean warming, and local eutrophication 

episodes, contribute to the expansion of marine dead zones 

(Stramma et al.,2008; Diaz and Rosenberg,2008). 

Sea Surface Temperature (SST) refers to the temperature of 

the ocean's uppermost layer, while Sea Surface Salinity (SSS) 

denotes the concentration of dissolved salts in the same layer. 

Both SST and SSS are fundamental oceanographic indices 

critical for understanding the physical and chemical properties 

of the ocean and their influence climate and ecosystems 

(Schmidt et al., 2019). SST variability is a multidimensional 

phenomenon driven by various natural and anthropogenic 

factors. SST oscillations are influenced by solar radiation, air-

sea heat exchanges, monsoonal circulation patterns, oceanic 

forcing mechanisms and human activities (Smith et al., 2020). 

These intricate interactions of mechanisms, underscore the 

need for comprehensive research into the complex dynamics 

of SST and its implications for climate and ecosystems. SSS 

concentration is regulated by multiple factors, including river 

freshwater discharge, precipitation, evaporation, climate 

variability, and oceanic currents (Rao and Sivakumar, 2003). 

mailto:vivekbhuoa@gmail.com
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The annual SST fluctuation in the Arabian Sea(AS) and the 

Bay of Bengal (BoB), is bi-modal (Colborn et al., 1975), with 

surface warming occurring in April-May and October, and 

surface cooling observed during the SW monsoon and winter 

months. However, the Arabian Sea experiences faster cooling 

during the SW monsoon. Previous studies highlight the 

significance of Arabian Sea. SST is significant due to its 

potential influence on the inter-annual variability of the Indian 

summer monsoon (Li et al., 2001; Vinayachandran,2004; 

Wilson-Diaz et al., 2009). 

During the south-west monsoon, winds are stronger over the 

Arabian Sea than over the Bay of Bengal due to the presence 

of the Findlater Jet (Shenoi et al., 2002). These stronger winds 

enhance evaporation, upwelling, and the spread of coastal 

cold waters along the shores of Arabia and Somalia, resulting 

in a broad distribution of cooler SST water into the central 

Arabian Sea. SST also influence monsoon onset 

(Vinayachandran2004) and biological productivity 

(Murtugudde et al., 2007) in the Arabian Sea. In both the 

Arabian Sea and Bay of Bengal, surface heat fluxes 

predominantly drive monthly SST variation, except the 

upwelling zone along the western boundary of the Arabian 

Sea(Chowdary et al., 2014;Du et al., 2019). SST fluctuation is 

further influenced by salinity effects and subsurface processes 

such as barrier layers, vertical entrainment, in solar radiation 

penetration depth, and zonal advection (Thangaprakashet al., 

2016). Monsoon driven variability in rainfall significantly 

impacts near-surface salinity variations, especially in the Bay 

of Bengal which exhibits a pronounced annual cycle of sea 

surface salinity (Akhil et al., 2014). Freshwater influx at the 

bay's northern end forms a shallow, stratified mixed layer 

with low salinity which is advected southwards along India's 

east coast being diminished by vertical mixing (Akhil et al., 

2014). This variability in freshwater input also contributes to 

the seasonal cycle of barrier layer thickness in the Bay of 

Bengal (Jana et al., 2015). Sea surface salinity has been 

widely used to describe oceanic phenomena such as ocean 

circulation, sea-level changes, instability waves, and Rossby 

waves. Changes in seawater density, caused by colder and 

saltier water, can lead to sinking to greater depth sustaining 

global ocean circulation.The Indian monsoon drives strong 

mixing and high productivity in the Arabian Sea, while in the 

Bay of Bengal, heavy rainfall and stratification limit mixing, 

but enhance atmospheric convection (Shenoi et al., 2002). 

Understanding the interaction of DO, SSTand SSS in these 

regions, is crucial for a comprehensive description of their 

marine environments. These parameters play an essential role 

in shaping the physical, chemical, and biological aspects of 

ecosystem dynamics, hypoxia and anoxia, climate change and 

ocean-atmosphere interactions.These parameters are 

interconnected, influencing one another and driving the 

physical and biogeochemical processes that define marine 

ecosystems and climate dynamics. This study synthesizes 

relevant literature and research findings to provide a 

comprehensive understanding of the variability and 

interdependencies of SSS, SST and DO in the Arabian Sea 

and Bay of Bengal. It highlights their ecological implications 

and contributes to a holistic assessment of these vital oceanic 

regions. DO dynamics are particularly significant in the 

Arabian Sea and Bay of Bengal. A multidisciplinary approach 

involving field measurements, remote sensing and modeling 

techniques, has been employed to uncover the driving 

mechanisms and ecological impacts of DO variability. 

Similarly, SST or SSS are critical drivers of weather patterns, 

ocean currents, and marine ecosystems in these regions. 

Research on SST and SSS variations leverages satellite 

observations, in-situ measurements, and numerical models to 

unravel there complex patterns and underlying mechanisms, 

and temporal and spatial dynamics. By exploring the 

interdependencies of these parameters and their implications 

for the marine environment, this study provides valuable 

insights into the ecological and climatic processes shaping the 

Arabian Sea and Bay of Bengal. 

STUDY AREA 

The study area in the Arabian Sea and the Bay of Bengal 

(Figure 1), provides a unique opportunity to investigate the 

inter-connectedness of physical and bio-geochemical 

processes and their impact on marine ecosystems. Through 

this study, we aim to enhance the broader understanding of 

complex oceanic dynamics, and ecological responses and the 

factors influencing the health and sustainability of marine 

environments. To facilitate a better understanding of 

variability, the study area is divided into specific regions, 

northern Arabian Sea , western Arabian Sea, eastern Arabian 

Sea, central Arabian Sea, northern Bay of Bengal, western 

Bay of Bengal, eastern Bay of Bengal and central Bay of 

Bengal. 

DATA AND METHODOLOGY 

Data 

Copernicus Marine Environment Monitoring Service 

(http://marine.copernicus.eu/), utilizing a horizontal resolution 

of 0.25o, provided the data for this study. The analysis 

employed the Global ocean analysisv3.6 NEMO (Nucleus for 

European Modeling of the Ocean), integrated with the 

PISCES (Pelagic Interaction Scheme for Carbon and 

Ecosystem Studies) biogeochemical model, using atmospheric 

forcing from European Centre for Medium-Range Weather 

Forecasts (ECMWF). Data spanning from 1998 to 2020 was 

used to understand the physical and biogeochemistry of the 

Arabian Sea and Bay of Bengal. 

http://marine.copernicus.eu/
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Figure 1. Different studied regions of the Northern Indian ocean 

Methodology 

In the present study, line graphs were used to illustrate the 

time series distribution of vital biogeochemical variables over 

the study period in the Arabian Sea and Bay of Bengal. This 

visual representation enables the observation of temporal 

patterns and trends, providing valuable insights into the 

variability of these variables. To explore the relationships 

between these variables, Pearson’s correlation test was 

conducted and statistical analysis assessed the strength and 

direction of the relationships among the biogeochemical 

variables. By quantifying the magnitude of these correlations, 

the study deepened our understanding of how the variables 

influence each other within the study area. Additionally, 

multiple linear regression models were developed separately 

for the Arabian Sea and Bay of Bengal, with DO 

concentration as the dependent variable. The analysis 

considered other biogeochemical variables as independent 

predictor to identify significant drivers of DO concentration. 

This approach revealed the critical factors influencing DO 

levels in the region and provided insights into the relative 

importance of different variables in shaping its distribution. 

Ultimately, this research enhanced our understanding of the 

factor affecting DO concentration in the Arabian Sea and Bay 

of Bengal. By identifying significant predictors and 

quantifying their impacts, it contributes to the broader 

understanding of biogeochemical processes and the dynamics 

of these vital oceanic regions. 

Descriptive Statistics 

Descriptive statistics were employed to summarize the 

biogeochemical data.  

Mean (μ) 

The arithmetic average of the dataset, calculated as: 

μ =
∑xᵢ

n
 

where xi represents individual data points, and n is the total 

number of observations. 

Standard Deviation (σ) 

A measure of data dispersion around the mean, computed as: 

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
 

Pearson Correlation Coefficient (r) 

 This correlation coefficient between two variables (X and Y) 

is given as: 

𝑟 =
𝛴𝑖=1

𝑛 (𝑥−𝑥̅̅ ̅̅ )(𝑦𝑖 − 𝑦̅)

√𝛴𝑖=1
𝑛 (𝑥𝑖 − 𝑥̅)𝑧 ∑ (𝑦 − 𝑦̅)2𝑛

𝑖=1

 

where, xi and yi represent the individual data points for 

variables X and Y, while xˉ and yˉ are their respective means. 

Regression Analysis 

To identify significant predictors of dissolved oxygen (DO) 

concentration, multiple linear regression models were 

developed for both the Arabian Sea and Bay of Bengal. The 

dependent variable in these models was DO concentration, 

while independent variables included the other 

biogeochemical parameters. The following model summary 

statistics were used to evaluate model performance: 

Model Summary Statistics 

R² =
Explained variance 

Total variance
 

Adjusted R², corrects R² for the number of predictors in the 

model which can be given as, 
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Adjusted R2 = 1 −
(1 − R²)(𝑛 − 1)

𝑛 − 𝑘 − 1
 

Where𝑛is the number of observations, k is the number of 

predictors, R is the correlation between observed and 

predicted values of the dependent variable. 

Standard error of the estimate (SE) measures the accuracy of 

predictions and can be written as a  

𝑆𝐸 =
√

∑ (𝑌𝑖 − Ŷ)
2

𝑛

𝑖=1

𝑛 − 𝑘 − 1
 

where Yi is the observed value, and Ŷ is the predicted value. 

Change Statistics 

R² Change: The increment in R² due to additional predictors. 

F Change: The F-statistic for the change in R², and can be 

calculated as, 

F change =
(R²new − R²old)/𝑚

(1 −  R²new)/(n − k − 1)
 

where 𝑚 is the number of new predictors added. 

RESULTS 

 

Seasonal variability of dissolved oxygen, sea surface 

temperature and sea surface salinity 

During the pre-monsoon season (Figure 2) in the northern 

Arabian Sea, DO levels range from 200-210mmol/m3, SST 

24.5-25ºC and SSS, 37-37.5PSU.These comparatively high 

values indicate that northern Arabian Sea waters have 

adequate oxygen levels, which are crucial for marine 

organisms that are reliant on dissolved oxygen for respiration. 

This temperature range is conducive to normal ocean 

circulation and weather patterns, and supports many marine 

species. The salinity levels suggest moderately saline waters, 

which influence ocean currents, density and the distribution of 

marine species. It also suggest, moderately saline waters, 

which influence ocean currents, density, and the distribution 

of marine species, as some are adapted to specific salinity 

conditions. In the western Arabian Sea region, the DO ranges 

from 200-210 mmol/m3, SST 28-28.5ºC, and SSS 36-

36.5PSU. Similarly, in the eastern Arabian Sea, DO 

concentrations are slightly lower at around 198-200 mmol/m3, 

with SST increasing from 27ºC in the north to28.5ºC in the 

south, and SSS decreasing southward from 34.5 PSU. In the 

central Arabian Sea, DO ranges from 190-200 mmol/m3,with 

a declining trend from north to south.SST varies between 

26.5-29ºC,increasing southward,while SSS decreases from37 

PSU in the north to 35.5 PSU in the south. In the northern 

Bay of Bengal, DO concentration is highest near the Ganges-

Brahmaputra river mouth, at 260 mmol/m3 and decreasing 

southward. SST near the river mouth is 25.5ºC, with regional 

variations ranging from 25.5-26.5ºC north to south. SSS in the 

northern Bay of Bengal is relatively low at 32 PSU during 

pre-monsoon season, reflecting the influence of freshwater 

input. In the western Bay of Bengal, DO ranges from 210-220 

mmol/m3, with a decreasing trend from north to south. SST 

ranges from 27.5ºC in the north to 29ºC in the south, while 

SSS varies from 32 PSU in the north to 33.5PSU in the south. 
 

 

Figure 2. Seasonal mean climatology of dissolved oxygen, sea surface salinity, and sea surface temperature over the Arabian Sea 

and Bay of Bengal. 
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In the eastern Bay of Bengal, DO concentration ranges from 

200-215 mmol/m3, slightly higher than those observed in the 

western Bay of Bengal and central Bay of Bengal. SST varies 

between 26.5-27ºC in the northern segment of the eastern Bay 

of Bengal with a slight increase toward the south. SSS 

remains steady at 32 PSU in this region. In the central Bay of 

Bengal, DO concentration show a declining trend, ranging 

from 205 mmol/m3 in the north to 196 mmol/m3 in the south. 

SST increases from 27.7ºC in the northern region to 29ºC in 

the southern region, while SSS is 32 PSU in the north, slightly 

increasing to 33.5 PSU in the southern central Bay of Bengal. 

During the monsoon season, the DO concentrations decline in 

the northern Arabian Sea to 190-195 mmol/m3. SST rises to 

30ºC, and SSS remains at 37 PSU. In the western Arabian 

Sea, DO levels are slightly higher, ranging from 200-210 

mmol/m3, with values near the Arabian coast reaching 210 

mmol/m3. This elevated DO spreads from the Arabian coast to 

the Socotra region. SST increases to (27.5ºC), although lower 

temperatures are recorded near the Arabian coast (26.5ºC) and 

in the Socotra region (26ºC). SSS in the western Arabian Sea 

varies from 36 PSU in the north to 37 PSU in the south, 

showing a decreasing trend from north to south. In the eastern 

Arabian Sea, DO levels vary from 190-200 mmol/m3, with a 

decreasing trend from north to south. SST ranges from 25.5ºC 

- 29ºC, with the Arabian coast experiencing temperatures of 

26.5ºC and the Socotra region 25.5ºC. SSS varies from 35.5 

PSU near the coast to 36 PSU farther offshore, increasing 

toward the central Arabian sea. Salinity generally decreases 

from north to south in the eastern Arabian sea region. In the 

central Arabian Sea, DO levels range from 190 to 200 

mmol/m3, with a slight increase observed southward. SST 

during the monsoon season ranges from 29.5ºC in the north to 

30ºC in the south. SSS starts at 37 PSU in the northern central 

Arabian Sea and decreases southward to 35.5 PSU. 

During the pre-monsoon season of the northern Arabian Sea, 

the DO is 200-210 mmol/m3, the SST is 24.5 - 25ºC and SSS 

in the range of 37 - 37.5 PSU. In the western Arabian Sea 

region, the DO is 200-210 mmol/m3, SST is 28-28.5ºC, and 

the SSS value is 36-36.5 PSU. In the eastern Arabian Sea, DO 

concentration is 198-200 mmol/m3, The SST varies from 27-

28.5ºC, showing a gradual increase from the northern to 

southern segment of the eastern Arabian Sea. The SSS 

decreases southward, starting at 34.5 PSU in the northern 

region. In the central Arabian Sea, the DO is 190-200 

mmol/m3.There is a decreasing trend in DO from north to 

south in the central Arabian Sea region. SST ranges from 

26.5-29ºC, showing an increase from north to the south. The 

SSS in the central Arabian Sea region varies from 35.5-37 

PSU, decreasing gradually from north to south. In the 

northern Bay of Bengal, dissolved oxygen is highest near the 

Ganges-Brahmaputra river mouth (260 mmol/m³), decreasing 

southward (230–260 mmol/m³). Sea surface temperature 

(SST) ranges from 25.5°C near the river mouth to 26.5°C in 

the south, while sea surface salinity (SSS) is 32 PSU during 

pre-monsoon. In the western Bay of Bengal, DO ranges from 

210–220 mmol/m³, also decreasing southward. SST in the 

western Bay of Bengal varies from 27.5ºC-29ºC.The SST is 

27.5ºC in the northern region and increases to 29ºC in 

southern segment of western Bay of Bengal. The SSS in 

north-western Bay of Bengal is 32 PSU increasing to 33.5 

PSU in southern segment of western Bay of Bengal region. 

The DO concentration in eastern Bay of Bengal region is 200-

215 mmol/m3, slightly higher than in western Bay of Bengal 

and central Bay of Bengal. SST in the eastern Bay of Bengal 

ranges from 26.5-27ºC. The northern segment of the eastern 

Bay of Bengal has a lower SST, which slightly increases 

toward the south. The SSS is 32 PSU in eastern Bay of 

Bengal. In the central Bay of Bengal, it is 205 mmol/m3 in the 

northern region, showing a decreasing trend toward the south, 

where it drops to 196 mmol/m3. The SST in the northern 

central Bay of Bengal is 27.7ºC and increases to 29ºC toward 

the south. The SSS starts at 32 PSU in the northern region and 

increases slightly toward the southern region, reaching 33.5 

PSU. 

During the monsoon season, the DO declines to190-195 

mmol/m3 in the northern Arabian Sea region. The temperature 

in the northern Arabian Sea is 30oC, and the SSS is 37 PSU. 

In the western region of the Arabian Sea, DO is slightly more 

than northern Arabian Sea 200-210 mmol/m3 and 210 

mmol/m3 reported near the Arabian coast. This increase in 

DO extends from the Arabian coast to the Socotra region. 

SST increases to 27.5ºC, but low temperature is found near 

the Arabian coast, where SST is 26.5ºC, and in the Socotra 

region, where it is 26ºC. SSS varies from 36 PSU to 37 PSU, 

showing a decreasing trend from north to south in the western 

Arabian Sea region. The DO in the eastern Arabian Sea varies 

from 190-200 mmol/m3, with a decreasing trend observed 

from north-to-south in the eastern Arabian Sea region. SST 

ranges from 25.5ºC to 29ºC during monsoon season. Near the 

Arabian coast, the SST is 26.5ºC and in the Socotra region, it 

is 25.5ºC. SSS ranges from 35.5 PSU to 36 PSU, with lower 

salinity observed near the coast areas of eastern Arabian Sea. 

Salinity increases toward the central Arabian Sea region 

within eastern Arabian Sea. In the central Arabian Sea region, 

DO ranges from 190 to 200 mmol/m3, with a slight increase in 

concentration observed from north to south. SST during the 

monsoon season varies from 29.5ºC to 30ºC. SSS in the 

northern central Arabian Sea 37 PSU, which decreases 

southward, reaches 35.5 PSU. In the monsoon season, the 

northern Bay of Bengal near the Ganges-Brahmputra river 

mouth has a DO of 280 mmol/m3, which decreases as it 

moves away from the northern coastal region. SST in the 

northern region is above 27.5-28ºC, and SSS is 32 PSU. In the 

western Bay of Bengal region, the DO near the coastal area is 
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195 mmol/m3, decreasing toward the central and eastern 

directions, reaching 190 mmol/m3. SST is about 29ºC near the 

western Bay of Bengal coastal region, showing a prolonged 

decreasing trend toward the central and southern western Bay 

of Bengal region, reaching 33.5 PSU. In the eastern Bay of 

Bengal region, DO is 198 mmol/m3. With only a slight 

variation during the monsoon season. SST is around 29ºC, 

showing only slight variation southward in the eastern Bay of 

Bengal. SSS in the eastern Bay of Bengal is 32 PSU during 

the monsoon season. In the central Bay of Bengal region, the 

DO is 196 mmol/m3, with a slight increase to 196.8 mmol/m3 

from southern to the northern segment central Bay of Bengal. 

SST is 28ºC, decreasing to 27.8ºC toward the southern region 

of the central Bay of Bengal. SSS in the northern Bay of 

Bengal is 33.1 PSU, decreasing to 32 PSU toward the south, 

then increasing again in the same direction. 

In the post-monsoon season, the DO in the northern Arabian 

Sea region is 200 mmol/m3. In the western region northern 

Arabian Sea region, the DO concentration is higher compared 

to the eastern part of the northern Arabian Sea region. SST in 

the northern Arabian Sea is 27 – 27.5ºC, and SSS is 37 PSU 

during the post-monsoon season. In the western Arabian Sea, 

the DO is 210 mmol/m3, slight decrease to 207 mmol/m3in the 

mid-western Arabian Sea. The SST near the coast of the 

western Arabian Sea is 26.5oC, and the DO increases to 21 

mmol/m3in the southern western Arabian Sea. Salinity in the 

western Arabian Sea region from 35.7 - 35.5 PSU with slight 

variations. The northern western Arabian Sea exhibits 

elevated salinity (+0.2 PSU) compared to southern freshening 

(−0.1 to −0.3 PSU), driven by evaporation-precipitation and 

riverine contrasts. In the eastern Arabian Sea, DO ranges from 

192-197 mmol/m3. The DO concentration increases 

southward along coastal region. SST in eastern Arabian Sea is 

27.5ºC, with slight decrease in the SST observed in the 

coastal and central regions of the eastern Arabian Sea. The 

SSS in the eastern Arabian Sea varies from 32.2-36PSU, with 

the lowest salinity (32 PSU) found near the Gulf of 

Khambhat. It slightly increases to 34 PSU toward the southern 

eastern Arabian Sea and reaches 36 PSU in the central-eastern 

Arabian Sea. In the central Arabian Sea, the DO is 200 

mmol/m3, which is lower than the eastern Arabian Sea region. 

A slight increase in DO is observed from east to west, while it 

decreases from north to south in the central Arabian Sea 

region. SST in the central Arabian Sea region varies from 27-

29ºC, with lower SST in the northern central Arabian Sea and 

decreases toward the southern central Arabian Sea. The SSS 

is 37 PSU and decreases toward the western Arabian Sea 

region. In the northern Bay of Bengal, highest DO 

concentration is 280 mmol/m3, present in the broad northern 

region near the Ganges-Brahmaputra river mouth. This high 

DO concentration gradually decreases toward the central open 

region of the Bay of Bengal. SST in northern Bay of Bengal is 

slower than during monsoon season, ranging from 27-28ºC, 

and it declines toward the central Bay of Bengal. The SSS in 

the northern Bay of Bengal is very low, at 32 PSU, and 

slightly increases toward the central Bay of Bengal. 

Annual variability of dissolved oxygen, sea surface 

temperature and sea surface salinity 

During the pre-monsoon season (Figure 3), DO levels in the 

Arabian Sea decline from 206 mmol/m3 to 197 mmol/m3. 

Simultaneously, SST increases from 26°C at the onset of pre-

monsoon to 29.7°C in mid-pre-monsoon, followed by a 

further rise during the transition from pre-monsoon to 

monsoon. Throughout the monsoon season, DO levels rise 

from 197 mmol/m3 to 204 mmol/m3, while sea surface salinity 

experiences an initially increase but shows a slight decline 

from July onwards. Meanwhile, SST decreases consistently 

from 29.8°C to 27.5°C during the monsoon period. In the 

post-monsoon season, DO levels in the Arabian Sea remain 

relatively stable, showing a slight increase from 197 

mmol/m3to 204 mmol/m3. Sea surface salinity exhibits a 

marginal increase initially, followed by a gradual decline. 

Concurrently, Sea surface temperature decreases steadily 

from 29.8°C to 27.5°C throughout the post-monsoon period. 

 

Figure 3. Annual cycle of the dissolved oxygen (mmol/m3), sea surface salinity(PSU) and sea surface temperature(˚C) over the Arabian 

Sea and Bay of Bengal.  
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In Contrast to the Arabian Sea region, the Bay of Bengal 

displays different trends in dissolved oxygen, sea surface 

salinity, and sea surface temperature. During the pre-monsoon 

season, dissolved oxygen levels decline rapidly from 214 

mmol/m3 to 204 mmol/m3, while sea surface salinity and sea 

surface temperature increases from 0.5 PSU to 27.8°C and 

28.8°C, respectively. Throughout the monsoon season, 

dissolved oxygen levels steadily raise from 203 mmol/m3 to 

214 mmol/m3, In contrast, sea surface salinity decreases from 

32.1 PSU to 29.9 PSU and sea surface temperature shows an 

initial slight decline followed by an increase towards the end 

of the monsoon period. In the post-monsoon season in the 

Bay of Bengal region, DO levels experience a slight decrease 

from 215 - 213 mmol/m3 initially, stabilizing toward the end 

of the season. Conversely, sea surface salinity exhibits an 

increasing trend from 29.8 PSU to 31 PSU, while sea surface 

temperature decreases from 29°C to 27.5°C. 

Inter-annual trend of dissolved oxygen, sea surface 

temperature and sea surface salinity  

A decreasing trend in the concentration of dissolved oxygen 

in the Arabian Sea is observed (Figure 4). The plot indicates a 

yearly decrease in DO concentration of 0.0061 mmol/m3, 

alongside an increase in sea surface temperature is 0.0017 and 

an increase in sea surface salinity to 0.00026 PSU. During the 

study period, the concentration of dissolved oxygen varied 

from 195.5 to 209 mmol/m3, sea surface salinity ranged from 

35.8 to 36.3 PSU, and sea surface temperature fluctuated 

between 25.4 and 30.1ºC. 

 

Figure 4. Temporal trend of DO (mmol/m3), SSS (PSU) and SST (˚C) from 1998 to 2020 in the Arabian Sea. 

 

Figure 5. Temporal trend of DO (mmol/m3), SSS (PSU) and SST (˚C) from 1998 to 2020 in Bay of Bengal region. 
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A decreasing trend in the concentration of dissolved oxygen 

in the Bay of Bengal is also observed (Figure 5). The plot 

indicates a yearly decrease in dissolved oxygen concentration 

of 0.0043 mmol/m3, an increase in sea surface temperature is 

0.0016ºC, and a decrease in sea surface salinity of 0.00059 

PSU. During the study period, the concentration of DO varied 

from 200.5 to 216 mmol/m3, sea surface salinity ranged from 

29.5 to 32.8 PSU, and sea surface temperature fluctuated 

between 26.4 and 30.5ºC. 

Anomaly of dissolved oxygen, sea surface temperature and 

sea surface salinity The dissolve oxygen anomaly (Figure 6) 

shows both increasing and decreasing trends, with dissolve 

oxygen and sea surface salinity exhibiting an increasing trend 

or vice versa. Sea surface salinity is influenced by global 

warming, IOD (Indian Ocean Dipole), monsoon and ENSO 

(El Niño-Southern Oscillation),while precipitation, cold 

currents or the winter season negatively impact Sea surface 

salinity. Cold current increase SSS or dissolve oxygen due to 

presence of high nutrient levels and a positive anomaly in 

dissolve oxygen, sea surface salinity and SST reflects an 

increase in dissolve oxygen, sea surface salinity 

concentration, and temperature. The line plot of the Arabian 

Sea anomaly indicates difference between actual dissolve 

oxygen, sea surface salinity, SST and the long-term average. 

An increase in the anomaly of dissolve oxygen may suggest 

the water is becoming more eutrophic or nutrient-rich, leading 

to increased primary productivity, decreased decomposition, 

mixing of water layers, reduced water temperature, improved 

and support of aquatic life growth. Similarly, an increase in 

the sea surface salinity anomaly indicates changes such as 

increased evaporation, decreased precipitation, or altered 

ocean currents, potentially harming marine life, altering food 

webs, and reducing water quality. An increase in the SST 

anomaly reflects influences from phenomenon like El Niño-

Southern Oscillation (ENSO), increased stratification, and 

changes in ocean currents, alongside climate-related impacts, 

such as rising sea levels, ocean acidification, and shifts in 

precipitation patterns. 

 

 

Figure 6. Anomaly of the dissolved oxygen (mmol/m3), sea surface salinity (PSU) and sea surface temperature (˚C) from 1998 to 2020 in 

Arabian Sea. 

 

Figure 7. Anomaly of the dissolved oxygen (mmol/m3), sea surface salinity(PSU) and sea surface temperature(˚C) from 1998 to 2020 in 

the Bay of Bengal region. 
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The line plot (Figure 7) illustrates anomalies in the Bay of 

Bengal (BoB), representing deviations from the long-term 

average in DO, sea surface salinity, and SST. These 

anomalies carry significant implications for the marine 

ecosystem. Specifically, we observe notable increases in DO 

anomalies during various periods. Such elevated DO 

anomalies may indicate a shift toward eutrophic conditions, 

characterized by increased nutrient enrichment. These 

conditions tend to enhance primary productivity, reduce 

decomposition rates, promote vertical mixing of water layers, 

and lower water temperatures, thereby improving overall 

water quality and supporting aquatic life. Additionally, the 

anomalies in sea surface salinity suggest changes in ocean 

conditions. These anomalies align with increased evaporation, 

decreased precipitation, and alterations in ocean currents, 

which may harm marine life and disrupt the marine food web. 

Such changes can ultimately lead to reduced water quality. In 

this case, SST anomalies variations may be linked to climatic 

phenomena such as the El Niño-Southern Oscillation (ENSO) 

and monsoonal influences. For instance, significant rainfall 

during the summer monsoon reduces salinity levels in the Bay 

of Bengal, while lower rainfall during the winter monsoon 

results increased salinity. These fluctuations can lead to 

stratification, shifts in ocean currents, and broader climate-

related impacts, including rising sea levels, ocean 

acidification, and changes in precipitation patterns. 

Statistics of dissolved oxygen, sea surface temperature and 

sea surface salinity 

This comprehensive descriptive analysis of key environmental 

parameters in the Arabian Sea region (Table 1a), including 

dissolved oxygen in Arabian sea, sea surface salinity, and sea 

surface temperature, provides valuable insights into the 

current state of the region’s environmental conditions. These 

parameters play a fundamental role in determining the health, 

sustainability and dynamics of the marine ecosystem. This 

analysis has revealed important results: The mean dissolved 

oxygen in the Arabian Sea is calculated to be 202.50 ± 2.61 

mmol/m³, indicating relatively low variability. Sea surface 

salinity Arabian Sea exhibits an average value of 35.90 PSU, 

with a small standard deviation of 0.14. Sea surface 

temperature records a mean value of 27.91ºC; with a standard 

deviation is 1.03oC. These findings underscore the relatively 

stable environmental conditions of the Arabian Sea, critical 

for maintaining its marine ecosystem. 

Pearson correlation (Table 1b) analysis of key environmental 

parameters in the Arabian sea region, including dissolved 

oxygen, sea surface salinity, and sea surface temperature was 

conducted to examine the relationships between these 

variables. The study aims to unravel potential associations 

and their implications for marine ecosystem dynamics in the 

Arabian sea region. The dissolved oxygen exhibits a weak 

negative correlation with sea surface salinity (r = -0.294), 

indicating that higher sea surface salinity is associated with 

slightly lower dissolved oxygen levels. Furthermore, 

dissolved oxygen shows a strong negative correlation with sea 

surface temperature (r = -0.711), implying that higher sea 

surface temperature corresponds to significantly lower DO 

levels. In contrast, sea surface salinity and sea surface 

temperature demonstrate a weak negative correlation (r = -

0.102).
 

Table 1(a).Analysis of key environmental parameters in the Arabian Sea 

Serial number Parameters Mean Standard deviation 

1. Dissolved oxygen 202.50 2.61 

2. Sea surface salinity 35.89 0.13 

3. Sea surface temperature 27.90 1.03 
 

Table 1(b). Pearson correlation and Sigma (1-tailed) over the Arabian Sea 

Correlation Dissolved oxygen Sea surface salinity Sea surface temperature 

Pearson 

correlation 

Dissolved oxygen 1.00 -0.29 -0.71 

Sea surface salinity -0.29 1.00 -0.10 

Sea surface temperature -0.71 -0.10 1.00 

Note:Significance: p < 0.05; p < 0.001. 

 

Table 1(c) Multiple linear regression models predicting dissolved oxygen in Arabian Sea 

Multiple linear regression model 

Data R R square Adjusted R 

square 

Std. error of 

the estimate 

Change statistics 

R square 

change 

F Change Degree of 

freedom 1 

Degree of 

freedom 2 

 0.800 0.640 0.638 1.5726232 0.640 243.940  2 274 

a. Dependent variable: Dissolved oxygen [mmol/m³] 

b. Predictors: Sea surface temperature [°C], Sea surface salinity [ PSU] 
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Table 2(a). Descriptive statistics of the Bay of Bengal 

Serial number Parameters Mean Standard deviation 

1. Dissolved oxygen 204.14 2.73 

2. Sea surface salinity 32.44 0.41 

3. Sea surface temperature 28.71 0.82 

  

Table 2(b). Pearson correlation matrix for environmental parameter in Bay of Bengal. 

Correlation Dissolved oxygen Sea surface salinity Sea surface 

temperature 

Pearson correlation 

 

Dissolved oxygen 1.000 -0.272 -0.837 

Sea surface salinity -0.272 1.000 -0.272 

Sea surface 

temperature 

-0.837 -0.224 1.000 

Note: 

Significance: p < 0.05; p < 0.001. 

 

Table 2(c). Multiple linear regression models statistics Bay of Bengal. 

 

A multiple linear regression model (Table 1c) was developed 

to predict dissolved oxygen (DO) variability in the Arabian 

Sea using sea surface temperature (SST) and salinity (SSS) as 

predictors. The model explains 64% of the variance in DO 

levels (R² = 0.640, Adjusted R² = 0.638) and demonstrates 

strong statistical significance (F = 243.940, p < 0.001). The 

high correlation coefficient (R = 0.800) and low standard 

error (1.573 mmol/m³) underscore the model’s precision and 

confirm that SST and SSS are critical drivers of dissolved 

oxygen dynamics in the region, indicating that the inclusion 

of the predictor variables has significantly improved the 

model's fit. 

Bay of Bengal exhibits (Table 2a) stable environmental 

conditions, with dissolved oxygen averaging 204.15 mmol/m³ 

(±2.73), sea surface salinity at 32.45 PSU (±0.41), and sea 

surface temperature of 28.71°C (±0.82). Low variability 

across these parameters suggests consistent hydrological and 

thermal regimes. These stable conditions likely enhance 

ecological resilience, supporting complex marine ecosystems. 

Such equilibrium underscores the Bay’s role as a vital refuge 

for marine life amid global environmental changes. 

Dissolved oxygen in the Bay of Bengal (Table 2b) declines 

significantly with rising sea surface temperature (r = -0.837, p 

< 0.001) and moderately with increasing salinity (r = -0.272, p 

< 0.05). Salinity and temperature show no significant 

correlation (r = -0.224, p > 0.05), highlighting sea surface 

temperature as the dominant driver of oxygen variability. 

These results align with the thermodynamic principle that 

warmer waters reduce oxygen solubility. The findings 

emphasize sea surface salinity critical role in predicting 

climate-driven oxygen depletion, vital for managing marine 

ecosystems. 

The multiple linear regression model (Table 2c) accounted for 

70.9% of the variance (R² = 0.709, F(2, 274) = 333.80, p < 

0.001) in dissolved oxygen concentrations within the Bay of 

Bengal, with sea surface temperature and sea surface salinity 

emerging as statistically significant predictors. Sea surface 

temperature demonstrated the strongest inverse association, 

consistent with the thermodynamic regulation of oxygen 

solubility in aqueous systems, wherein elevated temperatures 

reduce gas retention capacity. Sea surface salinity exhibited a 

moderate negative correlation, suggesting salinity-driven 

stratification or mixing processes may marginally attenuate 

oxygen availability. These results underscore sea surface 

temperature as the principal determinant of oxycline 

variability, with critical implications for predicting hypoxia 

under anthropogenic warming scenarios and informing 

adaptive management of pelagic ecosystems. 

CONCLUSIONS 

Following major conclusions can be drawn from the present 

study 

Multiple linear regression model 

 

 

Data 

 

 

R 

 

 

R 

Square 

 

 

Adjusted R 

Square 

 

 

Std. error of the 

estimate 

Change statistics 

R Square 

change 

F 

change 

Degree of 

freedom 1 

Degree of 

freedom 2 

 0.842 0.709 0.707 1.4832988 0.709 333.798 2 274 

a. Dependent Variable: Dissolved oxygen [mmol/m³] 

b. Predictors: Sea surface temperature [°C], Sea surface salinity [ PSU] 



J. Ind. Geophys. Union, 29(4) (2025), 248-259  Siddharth Srivasatv et al., 

258 

1. Significant decline in dissolved oxygen levels in both the 

Arabian sea and the Bay of Bengal, with Arabian sea 

experiencing a sharper decrease compared to Bay of Bengal. 

This oxygen loss coincides with increasing sea surface 

temperature in both regions, with Arabian sea also showing a 

slight rise in sea surface salinity, while Bay of Bengal exhibits 

freshening.  

2. A strong inverse correlation between sea surface 

temperature and dissolved oxygen is observed, with 

regression models attributing dissolved oxygen variability to 

sea surface temperature changes.  

3. Regionally, Arabian sea maintains higher salinity with 

moderate dissolved oxygen, while Bay of Bengal, influenced 

by freshwater influx, has lower salinity but slightly higher 

dissolved oxygen.  

4. Seasonal dynamics reveal a pre-monsoon dissolved oxygen 

drop in Arabian Sea, as sea surface temperature rises, 

followed by a monsoon-induced recovery, while Bay of 

Bengal, experiences post-monsoon dissolved oxygen peaks 

due to mixing but pre-monsoon stratification-induced 

declines.  

5. Anthropogenic influences and climate drivers, including 

warming, salinification, and monsoon variability, exacerbate 

hypoxia risks, with Arabian sea show increased stratification 

and reduced ventilation, while Bay of Bengal freshening 

trends intensify oxygen loss.  

6. Predictive models confirm sea surface temperature and SSS 

as major dissolved oxygen determinants, with Arabian sea 

regression model indicating moderate predictive power, 

whereas Bay of Bengal model underscores sea surface 

temperature dominant influence. 
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ABSTRACT 

Seismic hazards present significant risks to urban areas, highlighting the need for a comprehensive earthquake risk assessment (ERA) to enhance disaster 

preparedness. This study utilizes the Analytic Hierarchy Process (AHP) methodology to construct an integrated ERA map using Geographic Information 

System (GIS) for Varanasi city, which is one of the most densely populated cities of Northern India, located in the Indo-Gangetic plain. The AHP framework 

created a pairwise comparison matrix to assess the relative significance of factors affecting seismic risk, such as peak ground acceleration, geology, 

geomorphology, building density, population density, literacy, transports and building typology. Weights were based on global studies with similar 

characteristics, expert advice and consistency checks to ensure coherence in comparisons. Integrated AHP model is used to generate seismic hazard index 

and vulnerability index which is then integrated to develop a comprehensive seismic risk map using GIS. As a result, Varanasi City is classified into five 

zones of seismic risk levels, ranging from very low to very high for the seismicity occurrence with a 10% probability of exceedance and a 2% probability of 

exceedance in 50 years. Our study finds that 6.92% of the area of Varanasi city lies in the very high seismic risk zone (Zone 5), followed by 23.88% in high 

risk, 21.32% moderate, 20.25% low, and 27.66% very low risk (zone 1) for the seismicity occurrence with 10% probability of exceedance in 50 years (DBE). 

For a 2% probability of exceedance in 50 years (MCE), the distribution slightly changes, with 26.14% in very low, 21.24% low, 23.31% moderate, 21.69% 

high, and 7.62% area lie in very high seismic risk zones (Zone 5).  

Keywords: Seismic, hazard, vulnerability, risk, Varanasi city, Analytic Hierarchy Process (AHP). 

INTRODUCTION 

Varanasi, an ancient city in northern India, known for its rich 

cultural and religious heritage, is at significant seismic risk due 

to its location in the seismically active Gangetic Plain. As one 

of the most populated cities in northern India, Varanasi is 

vulnerable to potentially devastating earthquakes from nearby 

faults and tectonic features such as the Himalayan Frontal 

Thrust (HFT), ridges, and faults (Sahu and Saha, 2014; Singh 

et al., 2020). The city's aging infrastructure, with many 

buildings either very old and damaged or possessing specific 

structural weaknesses, further compounds its vulnerability to 

earthquake hazards (Jha and Bajwa, 2023). The presence of 

geological structures like the Faizabad Ridge, Allahabad Fault, 

Azamgarh Fault, Devoria Fault, Patna Fault, and the Siwan 

Fault, are capable of generating earthquakes or reactivating 

during large Himalayan seismic events, which is a matter of 

grave concern (Sahu and Saha, 2014; Singh et al., 2020). 

Notably, the HFT, the surface expression of the Main 

Himalayan Thrust, facilitates the northward movement of the 

Indian plate, often resulting in large earthquakes (Seeber and 

Armbruster, 1984). The thick quaternary alluvial deposits, 

ranging from clay to gravelly sand formations (Shukla and 

Raju, 2008), coupled with the low-lying terrain, heighten the 

city's susceptibility to seismic events and flooding hazards 

(Pandey et al., 2021). Geomorphological investigations have 

unveiled the intricate network of drainage systems and fluvial 

landforms that shape the Varanasi district, with the Varuna 

River basin serving as a focal point for comprehensive analysis 

(Prakash et al., 2016). These geological and geomorphological 

factors contribute to the region's complex hazard profile, 

necessitating a thorough understanding for effective risk 

assessment and mitigation strategies. The Varanasi city region 

chosen for the comprehensive risk assessment is shown in 

Figure 1.  

 

Several studies have earlier assessed seismic hazard and risk in 

Varanasi and other regions using geological, geophysical, and 

geotechnical data (Nath et al., 2019; Singh, 2022; Tiwari et al., 

2024). Using GIS and seismic hazard parameters, a seismic 

microzonation map for Delhi (India), has been developed by 

Mohanty et al. (2007). Anbazhagan et al. (2010) utilized 

probabilistic and deterministic approaches to assess seismic 

hazard and develop seismic risk maps for the Bangalore region. 

The Seismotectonic setup around Varanasi city is shown in 

Figure 1 (Bhukosh-GSI, 2023). 

Various approaches have been employed for seismic risk 

assessment and hazard mapping in past. These include 

Probabilistic Seismic Hazard Analysis (PSHA), which 

incorporates the probability of seismic events, ground motion 

attenuation models, and site conditions to estimate ground 

motion levels (Kramer, 1996), and Deterministic Seismic 

Hazard Analysis (DSHA), which considers the worst-case 

scenario of a maximum credible earthquake (Rasool et al., 

2024; Tilara et al., 2024).  

mailto:aaanuragt@gmail.com
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Figure 1. Seismotectonic setup around Varanasi city, India (Left) adopted from GSI (Bhukosh-GSI.gov.in) and study area of 

Varanasi City (Right) 

Other techniques involve Geographic Information System 

(GIS) for spatial data analysis and integration of geology, 

geomorphology, and seismic sources (Napieralski et al., 2012), 

Artificial Neural Networks (ANNs) and Machine Learning 

(ML) for pattern recognition, data analysis, and predictive 

modelling (Raschka and Mirjalili, 2017), as well as 

Multicriteria Decision Analysis (MCDA) techniques like 

TOPSIS, ELECTRE, and PROMETHEE for decision-making 

processes (Ishizaka and Nemery, 2014). However, these 

methods may not fully account for the complex interplay of 

various geological, geomorphological, and anthropogenic 

factors that can significantly influence seismic hazard at a local 

level. 

In this study, we developed a seismic risk map for the city of 

Varanasi, India, using the Analytic Hierarchy Process (AHP), 

which  is a powerful multi-criteria decision-making technique. 

The AHP, introduced by Saaty (1980), is a structured method 

that involves pairwise comparisons of decision criteria to 

derive their relative weights or priorities. These weights are 

then used to evaluate and rank alternative decisions or 

scenarios. The AHP has been widely applied in various 

domains, including natural hazard risk assessment (Ayalew et 

al., 2004; Ercanoglu and Gokceoglu, 2004; Lari et al., 2009). 

Specifically, for seismic risk mapping, the AHP allows the 

integration of multiple factors influencing seismic hazard, such 

as peak ground acceleration, geology, soil characteristics, and 

building density, into a comprehensive decision model. In 

present study, by constructing pairwise comparison matrices, 

calculating priority vectors, and ensuring consistency in 

judgments, the AHP provided a robust framework for 

evaluating and prioritizing seismic risk factors, ultimately 

leading to the generation of a seismic risk map for Varanasi 

city. 

DATA SOURCE 

The data for the various parameters influencing seismic hazard 

in Varanasi City, were acquired from diverse sources. The 

geological information was obtained from the Geological 

Survey of India (Bhukosh-GSI, 2023). The geomorphological 

data were derived from USGS satellite imagery, Google Earth 

data, and manual field visits to the study area (USGS, 2023). 

The seismotectonic data, including information on active faults 

and historical seismicity, were compiled from the Geological 

Survey of India and the International Seismological Centre 

databases (Bhukosh-GSI, 2023; ISC, 2023).  The rock level 

peak ground acceleration (PGA) values were sourced from the 

study of Nath (2017) and Nath et al. (2019) and surface PGA 

values were sourced from Tiwari et al. (2024). Shear wave 

velocity data was obtained from Singh et al. (2020). Population 

density data were obtained from the 2011 Census of India and 

the Ministry of Housing and Urban Affairs (Census India, 

2011). Information on building typologies was gathered 

through manual field visits, satellite imagery, google earth and 

surveys conducted within the city limits. The water table depth 

data were acquired from the reports of Central Ground Water 

Board (CGWB, 2023). Additionally, data on soil properties, 

such as the Standard Penetration Test (SPT-N) values, were 

obtained from the Varanasi Development Authority's records 

and site investigations (VDA, 2022).  

ANALYTIC HIERARCHY PROCESS FRAMEWORK 

The Analytic Hierarchy Process (AHP) is a technique for 

dealing with complex decisions by breaking them down into a 
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hierarchy of criteria of goal, criteria, and alternatives (Saaty, 

1980). In 1970, it was developed after recognizing the human 

mind's limited ability to integrate large amounts of information 

in making reasoned choices. AHP provided a way to combine 

logic and intuition in a structured, multi-criteria decision-

making process. AHP has been applied extensively in business, 

government, healthcare, and other sectors to evaluate 

alternatives against qualitative and quantitative factors 

(Ishizaka and Labib, 2011). Its key innovation was using 

pairwise comparisons derived from expert judgments and a 

proven mathematical foundation to derive accurate priority 

weights for each element (Saaty, 2008). AHP's sophisticated 

consistency checking mechanisms and systematic approach 

allow decision-makers to validate the integrity of their 

judgments. While computationally intensive compared to other 

techniques, AHP's inherent strength lies in modelling complex, 

multi-attribute decisions in a hierarchical structure reflecting 

real-world systems (Velasquez and Hester, 2013; Saaty, 2013). 

AHP methodology can be performed under following steps: 

Step 1: Problem identification and model build-up  

Identify the problem and decide the goal. The decision problem 

is structured into a hierarchical model. This hierarchical 

structure facilitates the analysis of the relationships between 

the elements within the inverted tree-structured network 

(Alizadeh et al., 2018; Saaty, 2008). 

Step 2: Structure the hierarchy (Goal ϵ Criteria ϵ Sub Criteria 

ϵ Alternatives) 

Break down the decision into a hierarchy of criteria, sub-

criteria, and alternatives. The goal is placed at the top level, 

followed by the main criteria, sub-criteria (if any), and finally, 

the alternatives at the bottom level (Ishizaka and Labib, 2011). 

Step 3: Pairwise Comparison Matrix formation 

In the AHP, the decision problem is structured into clusters and 

decision elements at multiple levels of abstraction. For 

instance, in a vulnerability mapping problem, the first cluster 

is goal (e.g., vulnerability mapping), the second cluster could 

represent the main criteria or dimensions, and the third cluster 

could consist of the indicators or sub-criteria (Saaty, 1980; 

Alizadeh et al., 2018). 

A pairwise comparison of the decision elements is conducted 

within each group, their relative importance is determined by 

comparing them in pairs against the criteria or higher-level 

element they belong to. The different criteria are also compared 

in pairs to assess how they depend on each other. These paired 

comparisons use a scale from 1 to 9, where 1 means the two 

elements are equally important, and 9 means one element is 

extremely more important than the other (Saaty, 1980; Panahi 

et al., 2014). Saaty, (1980) used rating scale as, 1 = Equal 

importance,  3: Moderate importance, 5: Strong importance, 7: 

Very strong importance, and 9: Extreme importance. To 

facilitate the compromises between slightly differing 

judgments, the numbers 2, 4, 6, 8, and their reciprocals could 

be used. The pairwise comparisons are organized in a square 

matrix, where the matrix element aij represents the relative 

importance of the ith element over the jth element. For the 

reciprocal comparison, the matrix element aji is set as the 

reciprocal value of aij, indicating the relative importance of the 

jth element over the ith element (Alizadeh et al., 2018). 

Step 4: Derive priority vectors (weights) 

The local priority vector (V), representing the relative weights 

or priorities of the decision elements, is obtained by calculating 

the principal eigenvector of the pairwise comparison matrix 

(A). This can be represented by the equation: 

𝐴𝑊 = λmax ∗  V                                                                                      (1) 

Where A is the pairwise comparison matrix, W is the 

eigenvector representing the priority vector, and λmax is the 

maximum eigenvalue of the matrix A (Alizadeh et al., 2018). 

Step 5: Consistency check 

To ensure the consistency of the pairwise comparisons, the 

Consistency Ratio (CR) is calculated using the following 

equations 

Consistency Index, 𝐶𝐼 =  (𝜆𝑚𝑎𝑥 −  𝑛) / (𝑛 −  1)    (2) 

Consistency Ratio,  𝐶𝑅 =  𝐶𝐼 / 𝑅𝐼                                      (3)                                                      

Where n denotes order of the pairwise comparison matrix, and 

RI denotes Random Consistency Index, which represents the 

average consistency index for randomly generated matrices of 

the same order (Saaty, 1980). If the calculated CR value is less 

than or equal to 0.1, the pairwise comparisons are considered 

acceptably consistent. Otherwise, the pairwise comparisons 

need to be revised until an acceptable consistency ratio is 

achieved (Saaty, 1980; Alizadeh et al., 2018). 

Step 6: Calculation of the Super matrix 

In the AHP, pairwise comparisons are used to estimate the 

super matrix, which is partitioned based on the clusters and 

elements of the decision hierarchy. The super matrix is a matrix 

representation of the relationships between the elements and 

clusters (Saaty, 1980; Alizadeh et al., 2018). Consider a 

decision problem with N clusters, denoted as C1, C2, C3, ..., Cn. 

Each cluster Ck contains mk elements, represented as (ek1, ek2, 

..., ekmk). The super matrix can be expressed as: 
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  𝑊 =  |

𝑊11 𝑊12 … 𝑊1𝑁

𝑊21 𝑊𝑦 … 𝑊1𝑁

… … … …
𝑊𝑁1 𝑊𝑁2 … 𝑊𝑁𝑁

|                  (4) 

Where Wij is the priority vector representing the relative 

importance or priority of the elements in cluster i with respect 

to the elements in cluster j. The priority vectors are derived 

from the pairwise comparison matrices (Alizadeh et al., 2018). 

Step 7: Selection of Alternatives 

The super matrix is used to select the best alternative based on 

the overall priorities derived from the AHP analysis by raising 

the super matrix to powers until it converges to a stable state, 

known as the limiting super matrix, which represents the 

overall priorities of the alternatives with respect to the goal. 

The alternative with the highest priority is considered the best 

choice. Sensitivity analysis can be performed to assess the 

robustness of the alternative rankings by varying the criteria 

weights. This process is essential for making informed 

decisions and achieving the desired objectives (Saaty, 1980; 

Alizadeh et al., 2018). A flow chart of holistic AHP framework 

is illustrated in Figure 2. 

 

Weightage parameters and rankings 

In this study, we employed the Analytic Hierarchy Process 

(AHP) to generate a comprehensive seismic risk map for 

Varanasi City, India, by evaluating and integrating multiple 

weighted parameters. The parameters considered were Peak 

Ground Acceleration (PGA), geology and geomorphology, 

water table depth, shear wave velocity (Vs30), EBR based 

SPT-N (Standard Penetration Test), population density, 

building density, educated people density, Distribution of 

universities, major offices, transport nodes, district office, and 

distance from service centres. These parameters were selected 

based on their significant influence on seismic hazard and 

vulnerability assessment. Population density accounts for the 

exposure of people and infrastructure to ground shaking, while 

PGA quantifies the maximum ground acceleration experienced 

during an earthquake. Geology, geomorphology, and water 

table depth affect the propagation and amplification of seismic 

waves, as well as the potential for ground failure and 

liquefaction. Building typology represents the structural 

characteristics and construction materials, which play a crucial 

role in their vulnerability to seismic events. Vs30 and SPT-N, 

provide insights into site amplification effects and soil strength, 

respectively, influencing the potential for structural damage

 

Figure 2. Flow chart of Analytic Hierarchy Process (AHP) methodology 
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Table 1. Evaluation of weights and ranks of layer for hazard estimation 

Category Rank Weight 

 PGA  1 5 

 EBR(N)  2 4 

 GG   3 3 

 Vs (30)  4 2 

 WT   5 1 

 
Table 2. Evaluation of weights and ranks of layer for vulnerability estimation 

Factors Rank Weight 

 a) Population density  1 8 

 b) Educated people density  2 7 

 c) Building density  3 6 

 d) Distribution of universities  4 5 

 e) Major offices  5 4 

 f) Transport nodes  6 3 

 g) District office  7 2 

 h) Distance from service centres  8 1 

 

Table 1 represents the assigned weights and ranks for various 

layers used in hazard estimation and Table 2 represents the 

assigned weights and ranks for various layers used in 

vulnerability estimation. The layers are prioritized and 

weighted based on their importance in assessing hazards and 

vulnerability. In hazard evaluation, the Peak Ground 

Acceleration (PGA) is ranked first with the highest weight of 

5, indicating its critical role. The engineering bed rock depth 

based on SPT-N values (EBR(N)) follows as the second most 

important layer with a weight of 4. Geology and 

geomorphology (GG) is ranked third and assigned a weight of 

3, reflecting its moderate significance. The fourth rank is held 

by the average shear wave velocity Vs (30), with a weight of 2, 

suggesting a lower relative importance. Finally, water table 

(WT) is ranked fifth and given the lowest weight of 1, 

indicating it has the least impact among the evaluated layers. 

This hierarchical structuring helps in systematically assessing 

and prioritizing the factors involved in hazard estimation. 

Ranks and weights' assignment done after several iterative 

process by checking consistency of pair wise matrix is 

presented in Table 3 as a result of ranks and weights' 

assignment.  

Pair wise comparison and consistency check 

The level of seismic hazard in the study area was defined based 

on a combination of historical earthquake records, statistical 

analyses, and the AHP-based prioritization of seismic hazard 

factors. The Varanasi region is situated in  the proximity to  

seismically active Himalayan Frontal Thrust (HFT) and other 

tectonic features, making it susceptible to potential high-

intensity earthquakes (Bilham, 2004; Malik et al., 2015). Using 

the AHP methodology, various seismic hazard parameters 

PGA, local geological and geomorphological factors, water 

table depth, Vs30 and Engineering bed rock depth were 

weighted and integrated to develop a composite seismic hazard 

index map. The decision matrix based on weighted and ranked 

hazard parameters (Table 1) is shown in Table 3 for hazard 

assessment. A total 10 pairwise comparisons were performed, 

to achieve a consistency ratio (CR) of 0.0004 (i.e., 0.04%), 

which quite acceptable range, indicating that our scrutinized 

judgments are consistent. The calculated principal eigenvalue 

for this pair matrix was 5.001, and the eigenvector solution 

achieved after four iterations. The eigen vector solution is 

shown in Table 3.  

Similarly, the pair wise comparison matrix for vulnerability 

assessment is shown in Table 4, which is used for priority 

matrix calculation (Table 2), along with their corresponding 

eigenvalues and consistency ratios. Consistency of pair wise 

matrix reviewed through several iterative process and validated 

the obtained weights and ranks, ensuring the appropriate 

adaptation of the AHP approach and the accuracy of the 

resulting vulnerability map. All the relevant layers, 

representing different vulnerability factors, were analysed for 

their significance using the AHP ranking approach and 

subsequently integrated within a Geographic Information 

System (GIS) environment for vulnerability mapping. 

A total 28 pairwise comparisons were performed, to get 

consistency ratio (CR) of 0.0026 (i.e., 0.26%), which quite 

acceptable range, indicating that our scrutinized judgments are 

consistent. The principal eigenvalue was 8.03, and the 

eigenvector solution achieved after five iterations. Priority 

weights for hazard map is shown in Table 5(a) and for 

vulnerability estimation shown in Table 5(b).
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Table 3. Decision matrix for hazard assessment 

Goal PGA EBR(N) GG Vs(30) WT 

PGA 1 3 5 7 9 

EBR(N) 0.33 1 3 5 7 

GG 0.20 0.33 1 3 5 

Vs (30) 0.14 0.20 0.33 1 3 

WT 0.11 0.14 0.20 0.33 1 

    CR = 0.0004 (or 0.04%) 

    λ max = 5.0016 

Table 4. Decision matrix for vulnerability assessment 

Goal a b c d e f g h 

a 1 3 5 7 9 9 9 9 

b 0.33 1 3 5 7 7 7 9 

c 0.20 0.33 1 3 5 5 7 7 

d 0.14 0.20 0.33 1 3 3 5 5 

e 0.11 0.14 0.20 0.33 1 1 3 3 

f 0.11 0.14 0.20 0.33 1 1 3 3 

g 0.11 0.14 0.14 0.20 0.33 0.33 1 1 

h 0.11 0.11 0.14 0.20 0.33 0.33 1 1 

   CR = 0.0026 (or 0.26%) 

   λmax = 8.02612 

Table 5(a).  Priority weights for Hazard estimation  

Parameters Priority Weights 

PGA 0.53 

WT 0.23 

EBR 0.13 

GG 0.07 

Vs30 0.03 
 

Table 5(b). Priority weights for Vulnerability estimation 

Parameters Priority weights 

 a) Population density  0.43330 

 b) Educated People density  0.28570 

 c) Building density  0.20240 

 d) Distribution of universities  0.11430 

 e) Major offices  0.05710 

 f) Transport nodes  0.05710 

 g) District office  0.02860 

 h) Distance from service centres  0.02860 
 

The heat map in Figure 3 illustrates the relative priority of 

various factors (layers) used in vulnerability mapping, 

labelled as (a) to (h). These factors correspond to the layers 

detailed in Table 2 and include: (a) Population density, (b) 

Educated people density, (c) Building density, (d) 

Distribution of universities, (e) Major offices, (f) Transport 

nodes, (g) District office, and (h) Distance from service 

centres. The heat map visually represents the weight or 

significance of each factor in the context of vulnerability 

assessment, with varying colour intensities indicating their 

relative importance. For instance, factors such as 

population density and building density might show higher 

priority due to their direct impact on vulnerability, while 

others like the distribution of universities or distance from 

service centres may have comparatively lower priority.  

This visualization helps stakeholders identify which factors 

contribute most significantly to vulnerability, enabling 

more targeted and effective planning and mitigation 

strategies. 
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Figure 3. Heat map showing assigned relative priority weights of factors,  a. Population density, b. Educated people density, c. Building 

density, d. Distribution of universities, e. Major offices, f. Transport nodes, g. District office, and h. Distance from service centres for 
vulnerability mapping 

 

Figure 4. Generalised integration model for hazard and vulnerability assessment 
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Integration model 

The hazard map of Varanasi city has been generated by 

integrating the various hazard parameters as mentioned in 

Table 1 and for vulnerability map by integrating the various 

vulnerability parameters as mentioned in Table 2. A general 

integration model for accessing the hazard index map and 

vulnerability index map is illustrated in the Figure 4, in which 

parameters A to N are general parameter which has been 

replaced by Table 1 parameters for the generation of integrated 

hazard map, while by Table 2 parameters used for the 

generation of integrated vulnerability map. 

 RESULTS AND DISCUSSION 

The assessment of seismic risk in the Varanasi region 

necessitates a comprehensive evaluation of multiple 

geological, geomorphological, seismological, and socio-

economic indicators. The local geological setting of Varanasi 

is characterized by unconsolidated Quaternary alluvial 

sediments (Shukla and Raju, 2008), that could play a 

significant role in amplifying ground motions during 

earthquakes (Nath et al., 2008; Alizadeh et al., 2018; Manna et 

al., 2022). Geomorphological parameters such as curvature and 

aspect provide insights into sedimentary basin delineation and 

fault orientation, respectively, contributing to a better 

understanding of seismic behaviour and ground motion 

propagation (Kamp et al., 2008; Zebardast, 2013). 

Seismological indicators, including earthquake magnitude 

distribution, peak ground acceleration mapping, seismicity 

spatial distribution, proximity to seismic sources, and fault 

density, play a crucial role in identifying areas with higher 

seismic hazard potential (Rashed and Weeks, 2003; Martins et 

al., 2012; Alizadeh et al., 2018). 

Vulnerability assessment considers various socio-economic 

factors that can exacerbate the impact of seismic events. The 

region's increasing population particularly in urban areas and 

thick alluvium settlements, raises concerns about vulnerability 

(Bilham, 2004; Armas, 2012; Malik et al., 2015; Alizadeh et 

al., 2018). Educational institutions play a vital role in fostering 

awareness and preparedness, to potentially reduce vulnerability 

(Martins et al., 2012; Alizadeh et al., 2018). The resilience of 

critical infrastructure, services, transportation networks, 

environmental infrastructure, significantly influences 

community's ability to respond and recover from seismic 

events (Rashed and Weeks, 2003; Wisner et al., 2004; Alizadeh 

et al., 2018). Integrating these multi-faceted indicators through 

a comprehensive seismic hazard and vulnerability assessment 

framework is crucial for informed decision-making and risk 

mitigation strategies in the Varanasi region. 

Hazard estimation  

A seismic hazard map for the Varanasi region was generated 

by integrating the results of the Analytic Hierarchy Process 

incorporating various seismic hazard parameters like PGA, 

local geological and geomorphological factors, water table 

depth, Vs30 and engineering bed rock depths. The seismic 

hazard map for study area of Varanasi city has been developed 

for 10% probability of exceedance in 50 years (Figure 5) and 

2% probability of exceedance in 50 years (Figure 6). The 

composite seismic hazard map was then classified into five 

hazard levels as shown in Figures 5 and 6 and hazard index, 

shown in Tables 6 and 7 using a quantile classification 

technique. 

Very high hazard: Areas with the highest seismic hazard index 

values greater than 0.70 for seismicity occurrence 10% 

probability of exceedance in 50 years (DBE) and greater than 

0.80 for seismicity occurrence 2% probability of exceedance in 

50 years (MCE), indicate a high likelihood of experiencing 

severe ground shaking and potential damage. 

 High hazard: Areas with high seismic hazard index values 

ranges from 0.55 to 0.70, for DBE and ranges from 0.65 to 

0.80, for MCE scenario, suggesting a significant risk of strong 

ground motions and potential damage  

Moderate hazard: Areas with moderate seismic hazard index 

values ranges from 0.40 to 0.55, for DBE and ranges from 0.50 

to 0.65, for MCE scenario, where moderate ground shaking and 

damage may occur. 

 Low hazard: In areas with lower seismic hazard, index values 

ranges from 0.25 to 0.40 for DBE and from 0.35 to 0.50 for 

MCE scenario, indicating a reduced risk of severe ground 

shaking and damage. 

 Very low hazard: Areas with the lowest seismic hazard index 

values less than 0.25 for DBE and less than 0.35 for MCE 

scenario, suggesting a minimal risk of significant ground 

shaking and damage. 

The resulting seismic hazard map (Figures 5 and 6) identifies 

the spatial distribution of hazard levels within the study area of 

Varanasi region. It is important to note that the seismic hazard 

map should be used in conjunction with vulnerability 

assessments and risk analyses, to provide a comprehensive 

understanding of the potential impacts of earthquakes on the 

built environment, infrastructure, and population. Additionally, 

regular updates and refinements to the hazard map may be 

necessary as new data and improved methodologies become 

available.
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Table 6. Hazard index table for 10% probability of exceedance in 50 years 

Zone Hazard level Hazard index 

Zone 1 Very low <0.25 

Zone 2 Low 0.25 -0.40 

Zone 3 Moderate 0.40 -0.55 

Zone 4 High 0.55 -0.70 

Zone 5 Very High > 0.70 
 

Table 7. Hazard index table for 2% probability of exceedance in 50 years 

Zone Hazard level Hazard index 

Zone 1 Very low <0.35 

Zone 2 Low 0.35 -0.50 

Zone 3 Moderate 0.50 -0.65 

Zone 4 High 0.65 -0.80 

Zone 5 Very High > 0.80 

 

 

Figure 5. Seismic hazard map of Varanasi city region for 10% probability of exceedance in 50 years 
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Figure 6. Seismic hazard map of Varanasi city region for 2% probability of exceedance in 50 years 

Vulnerability index estimation  

The Analytic Hierarchy Process was employed to integrate and 

aggregate various significant indicators as illustrated in Table 

2 for estimating the seismic vulnerability index. A hierarchical 

structure was developed, considering the relevant criteria and 

sub-criteria that contribute to seismic vulnerability. The 

priority of layers and their rankings which used in integration 

to generate seismic vulnerability map, is given in Table 2. The 

AHP analysis showed that population density, educational 

attainment, and building density were ranked as the top three 

(Table 2) most important criteria, with weights of 43.33%, 

28.57%, and 20.24% respectively (Tables 3b and 5b). Major 

offices, transport nodes, district offices, and distance from 

service centres are weighted 4, 3, 2, and 1, respectively, 

reflecting their varying degrees of influence on seismic 

vulnerability. The resultant vulnerability map  is classified into 

five categories: very low, low, medium, high, and very high 

vulnerability. The spatial distribution of these vulnerability 

levels was analysed, and the areas corresponding to each 

category are illustrated in Figure 7. The vulnerability index  

categorized zones at distinct levels (Table 8),  are based on their 

susceptibility areas. Zone 1 is classified as having a very low 

vulnerability with an index of less than 0.25. Zone 2 falls under 

the Low category, with indices ranging from 0.25 to 0.45. 

Zones with a moderate vulnerability   Zone 3, have indices 

between 0.45 and 0.65.  Similarly, zone 4 is considered a high 

vulnerability region, with an index range of 0.65 to 0.85. In 

comparison, zone 5 is marked by a very high vulnerability 

level, having an index greater than 0.85. 
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Table 8. Hazard index table for 2% probability of exceedance in 50 years 

Zone Vulnerability level Vulnerability index 

Zone 1 Very low <0.25 

Zone 2 Low 0.25-0.45 

Zone 3 Moderate 0.45-0.65 

Zone 4 High 0.65-0.85 

Zone 5 Very high >0.85 

 

 

Figure 7. Seismic vulnerability map of Varanasi study region 

The Present   investigation indicates that the areas with very 

high vulnerability are concentrated in the central part of the 

study region due to factors such as high building and 

population density, the presence of government offices, and a 

higher concentration of educated individuals. In contrast, very 

low vulnerability was observed in the northern and north-

western part of the region, where these conditions were 

reversed. 

Risk Estimation 

A comprehensive seismic risk map for the Varanasi study 

region was prepared by combining the seismic hazard map and 

the vulnerability map through spatial multiplication utilizing 

geographic information system tools. The resultant risk map 

was classified into five categories (very low, low, moderate, 

high, and very high risk) using a quantile classification 

technique (Welle and Birkmann, 2015). The areas 

corresponding to each risk category was calculated for the 

entire region and for different zones within the city. The 

analysis revealed that 6.92% of the total area fell under the very 

high risk category, while high, moderate, low, and very low-

risk zones are represented  by 23.88%, 21.32%, 20.25% and 

27.66% of the total area, respectively  as shown in Table 9 for 

seismicity occurrence 10% probability of exceedance in 50 

years while 7.62% of the total area fell under the extreme risk 

category, while high, moderate, low, and very low-risk zones 

represented 21.69%, 23.31%, 21.24 % and 26.14% of the total 

area, respectively (Table 10) for seismicity occurrence 2% 

probability of exceedance in 50 years. 

Based upon the geographic spatial distribution, the central parts 

of the city, comprising zones 4, and 5, were identified as areas 

with high seismic risk. Whereas, northeastern and northwestern 

part of city belonging to zones 1, 2 and 3 were classified as 

low-risk areas. High-risk areas are characterized by factors 

such as high population density, high building density, the 

presence of educated individuals, government offices, and 
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proximity to potential seismic sources effects. The potential 

impacts, population data for the Varanasi region were utilized 

to estimate the population at risk. Risk mapping was conducted 

for all the zones within the city, as illustrated in Figures 8 and 

9 and graphically presented in Figure 10, highlighting the most 

clustered risk zones. Based upon detailed calculations of 

seismic risk area-wise for the different zones, the studied 

Varanasi city region can be categorized into 5 zones from 1 to 

5 as illustrated in Tables 9 and 10 and Figures 8 and 9. Zone 1 

showing low risk while zone 5 signifies high risk. Figure 10 is 

graphical representation of city area belonging to very to very 

low seismic zone for DBE and MCE scenario both. This risk 

assessment provided valuable insights for prioritizing risk 

mitigation efforts, such as targeted seismic retrofitting 

programs, land-use planning, and emergency preparedness 

measures within the Varanasi region.

 

Table 9. Risk level for Varanasi study region for seismicity occurrence for 10% probability of exceedance in 50 years 

Zone Area (%) Risk level 

Zone 1 27.66 Very low 

Zone 2 20.25 Low 

Zone 3 21.32 Moderate 

Zone 4 23.88 High 

Zone 5 6.92 Very high 
 

Table 10. Risk level for Varanasi region for seismicity occurrence for 2% probability of exceedance 50 years 

Zone Area (%) Risk level 

Zone 1 26.14 Very low 

Zone 2 21.24 Low 

Zone 3 23.31 Moderate 

Zone 4 21.69 High  

Zone 5 7.62 Very high 

 

 

Figure 8. Risk map of Varanasi region for seismicity occurrence 10% probability of exceedance in 50 years 
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Figure 9. Risk map of Varanasi region for seismicity occurrence 2% probability of exceedance in 50 years 

 

Figure 10. (a) Pie chart showing area coverage of risk levels by categorized zone for seismicity occurrence with a 10% probability of 

occurrence in 50 years. (b) Pie chart showing area coverage of risk levels by categorized zone for seismicity occurrence with a 2% 

probability of occurrence in 50 years. 
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Validation 

The validation process ensured the robustness and reliability of 

the seismic risk assessment by triangulating the results with 

authoritative sources, empirical data, and on-site observations, 

as well as benchmarking against relevant research articles. The 

seismic hazard component was compared with the probabilistic 

seismic hazard assessment of Varanasi city by Nath et al. 

(2019), and the geological, geomorphological factors, and 

possible liquefaction hazard were cross-referenced with the 

regional study (Shukla and Raju, 2008; Prakash et al., 2016; 

Pandey et al., 2021; Shams et al., 2022; Singh, 2024; Tiwari et 

al., 2024 )  which showed  that  the central region of Varanasi 

city is more vulnerable to  seismic risk, in comparasion to the 

northern and southern part of varanasi city. Additionally, 

extensive field visits corroborated the vulnerability assessment 

with on-site observations. The vulnerability assessment aligned 

closely with the study by Karunarathne and Lee (2020) and 

Ramli et al. (2023). The overall risk assessment methodology 

and AHP application were validated by comparing with similar 

studies in seismic-prone regions, such as Sitharam et al. (2013) 

in Lucknow, Jena et al. (2020) for Aceh Province in Indonesia, 

Bhochhibhoya and Maharjan (2022) in Nepal, ensuring 

consistency in the methodological approach and plausibility of 

results. All the above components and a detailed seismic 

microzonation study of Varanasi done by Singh (2022) were 

also taken into account for validation of the result, exhibiting 

coherence in hazard values and seismic zonation patterns. 

CONCLUSIONS 

The present study addressed the critical need for a 

comprehensive seismic risk assessment in Varanasi city by 

integrating the Analytic Hierarchy Process (AHP) with 

Geographic Information System (GIS). The research aimed to 

evaluate seismic risk by incorporating multiple factors, such as 

peak ground acceleration, geology, geomorphology, Vs30, 

population density, building density, literacy, and 

transportation. The AHP-GIS methodology produced a 

detailed probable seismic risk map, classifying Varanasi into 

five risk levels (very low to very high). Key findings reveal that 

6.92% of the city’s area falls under the very high seismic risk 

zone for a 10% probability of exceedance in 50 years, while 

7.62% falls into the very high-risk zone for a 2% probability. 

These results highlight the urgent need for targeted mitigation 

strategies in high-risk areas to reduce vulnerability and enhance 

resilience. However, the study acknowledges certain 

limitations, including the dependence on the quality and 

availability of input data, the need for localization of the 

weighting scheme to better reflect region-specific conditions, 

and the necessity of continuous updates to the risk model due 

to the dynamic nature of urban development.  
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ABSTRACT 

Air pollution studies have found that the coarse and fine particulate matter are mainly responsible for various respiratory health effects for humans. This 

study focuses on the distribution and changes in the concentrations of PM10 and its precursors (SO2, NO2 and CO) in Perungudi, Chennai. Perungudi is 

chosen as the study area, as it is located on both commercial and residential site. The acquired data is used to estimate the various concentration levels of 

particulate pollution during the winter season of January and February 2022, using Pearson correlation and linear regression models .This statistical study 

helps in identify the significant relationship between the various pollutants SO2, NO2 and CO with PM10. Pearson correlation and linear regression models 

were applied to evaluate the dependence of PM10 concentration on its precursors based on daily values. The correlation results indicated positive low and 

moderate values. The regression R2 values show the variation of 20% to 25%. This study is an effective step toward a better understanding of PM10 changes 

in Perungudi under the changing influence of precursors. 

Keywords: Particulate matter, Precursors, Perungudi, Chennai, Winter period, Pearson correlation, Regression  

INTRODUCTION 

The atmosphere is a blanket of air that surrounds the Earth. 

This is a mixture of gases that contains a huge number of solid 

and liquid particles (Lal, 2004). It is a source of essential gases, 

temperature, rain, air and protects from UV rays and meteors 

(Sharma, 2002). Air can be defined as combination of gaseous 

matter that forms the stratosphere or the invisible gaseous 

substances surrounding the Earth. Further, the local 

meteorological conditions can also influence the level of PM10 

which include land surface temperature, precipitation and wind 

pressure (Zhang et al., 2015; Li et al., 2019; Faisal et al., 2022). 

According to World Health Organization (WHO), one in eight 

total global deaths occurs as a result of exposure to air 

pollution. Over 3.5 million people die each year from outdoor 

air pollution. Low and middle-income countries, especially the 

Western Pacific and South-East Asian countries, account for 

about 88% of those premature deaths (WHO, 2012). Particulate 

matter which is often called as PM is a very fine proxy indicator 

for air pollution, strong evidence has been observed for the 

negative health impacts due to the exposure of this pollutant, 

whose components include sulphates, nitrates, ammonia, 

sodium chloride, black carbon, and water. The WHO has set 

thresholds on limits of key air pollutant to aid in the policies 

related to decision making process. 3,00,000 deaths would be 

saved worldwide annually with a PM concentration of around 

35 µg/m3 . 

 These particulates in outdoor air pollution were recently 

designated as Group I carcinogen by the International Agency 

for Research on Cancer (Hamra et al., 2014). Many 

epidemiological studies have shown that particulates, 

especially inhalable particulates, are harmful to human health. 

In urban areas around the world, it is observed that on certain 

days, the atmospheric particulate matter is exposed to 

unhealthy concentrations. Therefore, using the Pearson's linear 

correlation coefficient, it was possible to analyze the 

interrelations between the occurrence of air pollution. The dust 

particle is mainly divided into different categories namely 

Suspended Particulate Matter (SPM), Respirable Suspended 

Particulate Matter (PM10 or RSPM), PM2.5, PM1 and ultrafine 

particles (Kushwaha et al., 2016). The classification and size of 

particles is given in Table 1.  

Although the air quality at a specific site, depend on many 

factors, some common characteristics of changes could be 

determined using statistical methods. Therefore, in literature, 

the correlation coefficient is often used as a statistical tool to 

analyze the nature of changes in air pollution (Coyne and 

Bingham, 1977; Sonkin and Nikolaev, 1993; Karaca, 2012; 

Keresztes and Rapo, 2017) 

Table 1. Classification and size of pollutant particles 

Fraction  Size range  

SPM  0.01-100μm in diameter  

RSPM or PM10  <=10μm diameter and diameter ranges from 2.5-

10 μm is called coarse fraction.  

Fine particles or PM2.5  <=2.5 μm in diameter  

PM1  <=1 μm in diameter  

Ultrafine particles (UFP)  <=0.1 μm in diameter  

 

https://www.sciencedirect.com/science/article/pii/S0048969724069274#bb0415
https://www.sciencedirect.com/science/article/pii/S0048969724069274#bb0175
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Figure 1. Study area of Perungudi in Chennai, located in Tamil Nadu (India) 

DATA AND STUDY AREA 

Perungudi is a neighbourhood of Chennai located in 

the state of Tamil Nadu (India), as shown in Figure 1. It is 

situated about 10 kilometres, south of Adyar. It is bordered on 

two sides by the Old Mahabalipuram Road and the Perungudi 

Lake. The PM10 data has been collected for Perungudi from the 

Tamil Nadu Pollution Control Board (TNPCB) website. 

TNPCB implements quality control measures for its data. It 

ensures data accuracy and all data is collected according to 

standards set by the Central Pollution Control Board (CPCB). 

Perungudi is chosen for study as it is one of the ambient air 

quality stations, and it is a residential cum commercial locality 

in the south Chennai area that is close to sea. Data chosen is for 

a monthly window from January 1, 2022 to February 28, 2022. 

Perungudi is one of the fastest growing neighbourhoods in the 

Chennai city which is situated 10 km south of Adyar. This 

locality is a part of the eminent IT corridor and is been bordered 

by (OMR) Old Mahabalipuram road which is an expressway 

and it houses more than 60 top notch IT companies and several 

small-scale industries. It is being increasingly preferred as a 

residential place for software engineers. Perungudi has a lake 

which spreads over 50 acre of water body, once a major source 

for irrigation. Currently, it caters to the ever-growing water 

demand of the domestic needs and it helps in recharging ground 

water. When choosing variables to study air pollution, 

researchers typically select pollutants like particulate matter 

(PM2.5, PM10), nitrogen dioxide (NO2), ozone (O3), sulfur 

dioxide (SO2), and carbon monoxide (CO) because they are 

well-established as significant contributors to health issues and 

have clear sources, allowing for targeted analysis of emission 

controls and mitigation strategies. The study of pollutants SO2, 

NO2 and CO with PM10. would give a better perspective of the 

concentration level and help in in both climatic and their health 

impacts .This study helps in modelling the future pollutants of 

Perungudi . 

PEARSON’S CORRELATION COEFFICIENT 

Testing the degree of correlation between two or more 

variables is one of the most important statistical procedures 

(Hashim et al., 2018). Pearson's linear correlation coefficient is 

used to analyse the dependencies between the presence of 

pollutants in the air, and various types of ailments and diseases 

occurring in the groups of the people exposed to these 

pollutants (Liu et al., 2016; Lee et al., 2017). By definition, this 

coefficient is used to determine the similarity of objects or 

variables and their linear interdependence (Thompson, 1984; 

Asuero et al., 2006). We also used Pearson correlation 

coefficient r, to measure the correlation between PM10 

concentration and other air pollutants (Jafri et al., 2022). It can 

range from +1 to -1. A value of 0 indicates that there is no 

association between the two variables. A value greater than 0 

indicates a positive association; that is, as the value of one 

variable increases, so does the value of the other variable. A 

value less than 0 indicates a negative association; that is, as the 

value of one variable increases, the value of the other variable 

decreases.  

The Pearson’s correlation coefficient (r) can be expressed as,  

r = [n(Σxy) − ΣxΣy]/√[n(Σx2) − (Σx)2][n(Σy2) − (Σy)2] 

https://en.wikipedia.org/wiki/Chennai
https://en.wikipedia.org/wiki/States_and_territories_of_India
https://en.wikipedia.org/wiki/Tamil_Nadu
https://en.wikipedia.org/wiki/Adyar_(Chennai)
https://en.wikipedia.org/wiki/Old_Mahabalipuram_Road
https://en.wikipedia.org/wiki/Perungudi_Lake
https://en.wikipedia.org/wiki/Perungudi_Lake
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 Where, x is the independent variable, y is the dependent 

variable, n is the sample size, and Σ represents a summation of 

all values. Correlation analysis cannot be interpreted as 

establishing cause-and-effect relationships. It can indicate only 

how or to what extent variables are associated with each other. 

The correlation coefficient measures only the degree of linear 

association between two variables. 

Interpretation of the calculated coefficient depends on its value. 

The stronger are the interdependencies between variables, the 

higher is the coefficient. Therefore, specific ranges of the 

coefficient are determined, depending on the field of 

knowledge, to describe the strength of the interdependencies 

(Akoglu, 2018). In this analysis, the interpretation of the R 

coefficient was adopted as per Table 2. 

COEFFICIENT OF DETERMINATION  

Linear regression is a powerful tool for predicting future 

events. It calculates an equation that minimizes the distance 

between the fitted line and all of the data points. R squared or 

R2, coefficient of determination is a statistical measure that 

gives information about the plotted regression line that fits the 

actual data. R2 measures the amount of variation between the 

actual and predicted values in the regression model. R2 values 

range from 0 to 1 expressed as a percentage from 0% to 100%. 

The higher R2 value shows the better regression line fitting to 

the data. If the value is close to 0, then the regression model is 

not a good fit. R2 is used to find whether the independent and 

dependent variables have linear relationship between them. 

RESULTS AND DISCUSSION 

We discuss the correlation results of PM10 with its precursor 

pollutants. PM10 with NO2, SO2 and CO are not highly 

correlated in the studied Perungudi region. They show mostly 

low or moderate correlation. But all are positively correlated. 

When PM10 increases, other pollutants NO2, SO2 and CO also 

increases and vice versa. The correlation values are tabulated 

in the Table 3. 

The time series plot of PM10 clearly shows that there is a 

variation in pollution for every day (Figure 2). Although, it is 

not consistent, there is a positive correlation between PM10 and 

other pollutants. 

In our study, R2 value for SO2, NO2 and CO are almost the 

same, ranging between 20% to 25% (Figures 3, 4 and 5). Since 

the correlation is low and moderate, R2 values are less. The 

variation between the actual and predicted values are more in 

this region. It should be continuously monitored as other 

pollutants also begins to increase or decrease depends on PM10 

level. If there is an increase in NO2, SO2 and CO levels, the 

severity of health issues also will raise in Perungudi region. 

Exposure of NO2 is known to cause adverse health effects on 

the respiratory system. Short term exposure is associated with 

an increased risk of death, both cardiovascular and respiratory 

system. Long term exposure contributes to the development of 

asthma, increase in respiratory infections and chronic lung 

diseases. NO2 is also responsible for the formation of nitrate 

aerosols which cause haze and reduce visibility. This is called 

smog formation which is a pollution cloud. The highest 

concentrations of NO2 are found in road traffic. Sulphur 

dioxide emissions are also known to be the precursor of 

sulphate aerosol, which is a key player in Earth’s energy 

balance. Sulphate aerosols are considered to act as cloud 

condensation nuclei, favoring cloud formation. This reduces 

the amount of solar radiation that reaches the surface. Exposure 

to SO2 produces impairment of respiratory function, asthma 

and also chronic obstructive pulmonary disease (COPD). 

Cardiovascular diseases are also produced due to long 

exposure. (Tran et al., 2020). Similarly, exposure to CO causes 

fatigue, chest pain, impaired vision, reduced brain function. 

The adverse health effects at low concentrations are impacts on 

cardiovascular and neurobehavioral processes and at high 

concentrations, it leads to unconsciousness or death (Raub et 

al., 2000).

Table 2. Interpretation of (r) linear correlation coefficient  

0.90–1.00 Very high correlation 

0.70–0.89 High correlation 

0.50–0.69 Moderate correlation 

0.30–0.49 Low correlation 

0.00–0.29 Little correlation, if any 

Table 3. Correlation values of PM10 with its precursors in Perungudi region, Chennai 

   PM10   NO2   SO2   CO 

PM10 1 0.457 0.473 0.506 

NO2 0.457 1 0.379 0.547 

SO2 0.473 0.379 1 0.481 

CO 0.506 0.547 0.481 1 
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Figure 2. Time series plot of PM10 for Perungudi, Chennai (India) 

 

Figure 3. Regression plot of PM10 with SO2 for Perungudi, Chennai (India) 

 

Figure 4. Regression plot of PM10 with NO2 for Perungudi, Chennai (India) 

 

Figure 5. Regression plot of PM10 with CO for Perungudi, Chennai (India) 
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CONCLUSIONS 

There is a positive correlation between PM10 and other gaseous 

pollutants like SO2, NO2 and CO which suggests that these 

gases also contribute to the formation of fine sulfate and nitrate 

particles as part of the PM10 concentration in the atmosphere. 

PM10 concentration is found to be less significant in Perungudi, 

as the linear relationship between them implies that the fraction 

of the variance (R2) lies within 25%. The low R2 suggests that 

the investigation of other variables contributing to the 

variability of pollutants at the site should be considered 

simultaneously. However, it should be remembered, that the 

correlation coefficients do not always prove the existence (or 

absence) of dependencies between the analyzed variables 

(Sharma, 2005), but may indicate the possible occurrence of 

such interdependencies. Therefore, it should be investigated if 

the significant impact to this phenomenon was related to 

similar weather conditions. Visual aids such as scatter plots or 

heatmaps could be added in future to enhance this type of work. 

This study is a part of broader research initiative focused on the 

study of mitigating pollutants, implementing climate friendly 

policies in urban planning such as energy-efficient housing, 

greener cities, shifting to cleaner modes of energy, low 

emission vehicles, use of free power sources, cleaner 

technology to reduce industrial emissions, and finally the 

municipal waste management that can control air pollution in 

Perungudi . 
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ABSTRACT  

The eastern margin of the Indian shield presents a geologically and geotectonically intricate zone where Proterozoic sedimentary basins and the high-grade 

metamorphic Eastern Ghats Belt (EGB), are juxtaposed along a broad, shear-dominated contact stretching from Odisha in the north to northern Tamil Nadu 

in the south. The tectonic relationship between the Bastar craton and the Eastern Ghats Belt in eastern India, has been the subject of considerable geological 

interest due to its implications for Proterozoic crustal evolution, basin development, and the assembly of ancient continental blocks. In this study, satellite-

derived gravity data over Bastar craton and adjoining regions have been analysed to explore the possible extension of Proterozoic sedimentary sequences of 

this craton beneath EGB. The presence of a prominent residual gravity low of the order of -50 mGal on the SE part of the study area has been delineated 

below the EGB terrain, indicating possible presence of Mesoproterozoic to early Neoproterozoic sedimentary sequences. Further, gravity modelling across 

the Bastar craton and EGB, reveals steep crustal-scale contacts and high-density zones that are consistent with a under-thrust geometry. The underthrusting 

of Bastar sediments beneath the EGB likely occurred during the Mesoproterozoic collisional events, linked to the Rodinia supercontinent assembly. These 

findings not only enhance our understanding of the tectono-thermal history of the Bastar craton and EGB interface, but also provide a framework for re-

evaluating crustal accretion processes along the cratonic margins in the Indian shield. 

Key Words: Proterozoic sediments, Eastern Ghats Belt (EGB), Satellite gravity, Finite Element Method, Bastar craton, Bastar-EGB interface 

INTRODUCTION 

The Indian peninsular shield predominantly comprises 

Precambrian crustal blocks that formed approximately 3.6 to 

2.6 billion years ago during the Archean Eon, representing 

some of the earliest solidified portions of the Earth’s 

lithosphere (Sarkar et al., 1990; Sharma, 2010). These stable 

crustal blocks, commonly known as cratons, form the 

foundational cores of continental plates and are the key to 

understanding early Earth processes (Smithies et al., 2009). 

The tectonic framework of the Indian shield is well 

characterized by five major cratons, the Aravalli, Bundelkhand, 

Singhbhum, Bastar, and Dharwar, each exhibiting distinct 

geological histories and tectono-thermal events (Naqvi and 

Rogers, 1987; Ramakrishnan and Vaidyanadhan, 2010) (Figure 

1). These Archean cratonic blocks are bounded and separated 

by various Proterozoic mobile belts, rift zones, grabens, and the 

shear zones, reflecting a complex and prolonged tectonic 

evolution marked by episodic collisions, accretions, and crustal 

reworking (Meert, 2003). 

This study principally focuses on the Bastar craton, a 

significant Archean cratonic block situated in central India, 

renowned for its preserved ancient crust and tectono-thermal 

history that provide invaluable insights into the geodynamic 

evolution of the Indian Shield (Asokan et al., 2020; Mohanty, 

2021), which in turn has implications for global tectonics, 

including supercontinent cycles such as Columbia and Rodinia 

(Satpathi et al., 2022). However, the intricate and 

heterogeneous litho-tectonic configuration within the Bastar 

region, characterized by a mosaic of metavolcanic, 

metasedimentary and granitic units, renders lithological 

correlations speculative and complex.  

Multiple geological and geophysical investigations have been 

conducted to unravel the crustal and lithospheric architecture 

of the Bastar craton. Seismic wave dispersion studies reveal a 

lithospheric thickness of approximately 140 km beneath this 

region (Mitra et al., 2006). Complementary seismological 

analyses estimate the crustal thickness of Bastar craton to be in 

the range of 35–40 km, consistent with the other ancient 

continental crusts worldwide (Jagadeesh and Rai, 2008). Heat 

flow measurements carried out by Gupta et al. (1993) have 

documented relatively high surface heat flow in Bastar craton 

compared to the Dharwar craton, which has been attributed to 

spatial variations in upper crustal radiogenic heat production 

and possibly localized tectono-thermal activity. 

In addition, several studies were also carried out to understand 

the tectonic relationship between the Bastar craton and the 

Eastern Ghats Belt (EGB) in eastern India. The southeastern 

margin of the Bastar craton is structurally juxtaposed against 

the high-grade Proterozoic EGB, forming a tectonically 

complex and thermally contrasting boundary in eastern 

Peninsular India. Proterozoic sedimentary basins, such as the 

Chhattisgarh Supergroup (~1.4–1.0 Ga), Khariar, Indravati, 

Sabari, Abujhmar and Amphani groups, lie along the Bastar 

craton’s fringe and are interpreted as rift-related intra-basinal 

sequences. Gravity studies highlight the presence of 

tectonically active contact between Bastar craton and the EGB 

(Subramanyam and Verma, 1986; Kumar et al., 2004; Valdiya, 

2015). Moreover, thermal (Bhadra et al., 2004), geochemical 

and geochronological studies have identified successive mafic 

magmatic events that have profoundly reshaped the lithosphere 

of the Bastar craton, evidencing sustained crust-mantle 

interactions that may have influenced its present-day 

geodynamic character (Rao et al., 2023). 

mailto:vasanthi99ngri@gmail.com


Ankita Roy et al.,               J. Ind. Geophys. Union, 29(4) (2025), 282-292   

283 

 

Figure 1. Distribution of cratons and mobile belts in India. Location of present study area is shown by red colour box (modified after 

Chowdari, 2019). CB: Cuddapah basin, SIMB: South India Mobile Belt, SGT: Southern Granulite Terrain. 

 

Figure 2. Generalized geology and tectonic boundaries of Bastar craton (modified after Santosh et al., 2020). 



J. Ind. Geophys. Union, 29(4) (2025), 282-292                                                                                                                                      Ankita Roy et al., 

  

  

284 

 

In the present study, gravity data derived from a Global Gravity 

Model (Zingerle et al., 2020) over the Bastar craton and its 

adjoining regions, are analyzed to delineate the subsurface 

tectonic framework, and to check the possibility of extension 

of Proterozoic sediments beneath the EGB. The application of 

edge enhancement techniques enables detailed delineation of 

faults, lineaments, and tectonic boundaries that are otherwise 

challenging to resolve. Additionally, 2.5D gravity modeling 

along a NW-SE profile, cutting across the Eastern Ghats Belt 

and Bastar craton, is employed to further constrain the crustal 

and lithospheric configuration. 

GEOLOGY AND STRUCTURAL FRAMEWORK  

Bastar craton, displaying a broadly trapezoidal configuration 

(Mohanty, 2021), lies within 1730 N - 2330 N and 77 48 

E – 8406 E. This craton is confined by mobile belts and rift 

zones from all sides, Godavari rift zone in the south-western 

part and Mahanadi rift in north-east. The south-eastern part of 

this craton is marked by Eastern Ghats Belt (Biswal et al., 

2001). The Central India Tectonic Zone, Son-Narmada 

lineament, and the Satpura Mobile belt, forms the boundary 

close to north-western part of the craton (Bandyopadhyay, 

1995). The major geological formations in this region are 

tonalite- trondhjeamite- granodiorite (TTG)- rich gneissic 

basement complex, enclaves of high grade supracrustal rocks 

forming the granulitic belts, intra cratonic Kotri-Dongarhgarh 

mobile belt, and Proterozoic Purana basins (Ramakrishnan and 

Vaidyanadhan, 2010) (Figure 2). The initial crustal growth 

phase in the craton took place during Paleoarchean period 

(Sarkar et al.,1993).  

This craton hosts several intra-cratonic Proterozoic 

sedimentary basins among which, Chhattisgarh Basin (Deb, 

2004) is the largest. Other small basins include Indravati, 

Ampani, Abujhmar, Khariar, Sabari and Pakhal. The complex 

geology of Bastar craton reflects a long tectonic history which 

not only shapes the surface geology, but also influenced the 

underlying deep crustal processes. Among the major 

supracrustal/volcanic sequences, the Kotri-Dongargarh 

Supergroup is mainly composed of the Amagaon, Nandagon 

and Khairagarh groups of rocks. The Amagon group, composed 

of granites and gneisses with subordinate schists 

and quartzites, is considered to have been formed at around 

2.3 Ga (Naqvi and Rogers, 1987). The Nandgaon Group 

incorporates the Bijli and Pitapani volcanic suites, which are 

dominated by rhyolites and subordinate dacites and andesites, 

with the rhyolite dated at 2503 to 2180 Ma (Sarkar et al., 1993). 

This terrain also hosts several deformed alkaline complexes 

along the suture with the Eastern Ghats Belt, including the 

Mesoproterozoic (1480 Ma) Khariar alkaline complex. The 

Southern portion of Bastar craton exhibits several episodes of 

mafic magmatism, as evidenced by the presence of several 

mafic dyke swarms (Srivastava et al., 2021; Rao et al., 2023).  

REGIONAL TOPOGRAPHY  

The overall topography of this region (Figure 3) is rugged as it 

is integrally linked with mobile belts, rift zones and low-lying 

Proterozoic basinal structures. The elevation varies from as low 

as 150 m for low lying areas to more than 900 m for upland 

regions. For example, Eastern Ghats Belt along the south 

eastern part of the craton, is a structurally upland region, with 

high elevation of around 900 meter (Valdiya, 2015). In 

contrast, the intra-cratonic depressions, including 

Chhattisgarh, Indravati, Sabari, Ampani, Abujhmar, Khariar, 

collectively form the significant low relief topographic feature. 

The regions uneven topography is further emphasized by the 

presence of localized tectonic belt. Kotri-Dongargarh mobile 

belt is one such tectonic feature, extending ~ 250 km in length, 

with 50 km wide range from north-south to NNE-SSW 

direction (Chakraborty and Debnath, 2023). The structurally 

uplifted nature of the belt, resulted into localized topography 

high (Ramakrishnan and Vaidyanadhan, 2010).  

GRAVITY STUDY 

For the present study, the gravity data of the Bastar craton and 

its adjoining regions have been derived from XGM2019e_2159 

global gravity field model, which offers a harmonized and high 

resolution representation of Earth’s gravity field (Zingerle et 

al., 2020). Figure 4 depicts the Bouguer anomaly map of the 

studied region, where the anomalies range from -95 mGal to 

+75 mGal. All the basins of the craton are clearly brought-out 

with prominent gravity lows, while different high-grade rocks 

are well reflected by gravity highs.  

In general, the observed Bouguer gravity anomaly reflects 

contribution from both deeper (regional) and shallower 

(residual) sources, and it is thus important to remove the 

broader regional trend, which in turn brings out various 

geological structural features very clearly. In this study, Finite 

Element Method (FEM) (Mallick et al., 2012; Vasanthi and 

Santosh, 2021a, b) has been used to compute the regional 

gravity component, which has been subsequently removed 

from observed Bouguer gravity anomaly to obtain the residual 

gravity anomaly map. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/quartzite
https://www.sciencedirect.com/science/article/pii/S1342937X19302771#bib71
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/andesite
https://www.sciencedirect.com/science/article/pii/S1342937X19302771#bib103
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Figure 3. Topographic map of the study region obtained from the Shuttle Radar Topography Mission (SRTM) 

(ftp://edcsgs9.cr.usgs.gov/pub/data/srtm). Bold black line denotes the boundary of the Bastar craton, and white solid line represents the 

basin boundaries. Ch B: Chhattisgarh Basin, KB: Khariar Basin, AB: Ampani Basin, IB: Indravati Basin, SB: Sabari Basin, PB: Pakhal 

Basin, MR: Mahanadi Rift, GR: Godavari Rift, EGB: Eastern Ghats Belt. 

 

Figure 4. Bouguer gravity anomaly map of the Bastar craton and its surrounding regions. Bold black line denotes the boundary of the 

Bastar craton, and white solid line represents the basinal boundaries. Ch B: Chhattisgarh Basin, KB: Khariar Basin, AB: Ampani Basin, 

IB: Indravati Basin, SB: Sabari Basin, PB: Pakhal Basin, MR: Mahanadi Rift, GR: Godavari Rift, EGB: Eastern Ghats Belt. 

ftp://edcsgs9.cr.usgs.gov/pub/data/srtm
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Figure 5. Residual gravity anomaly map, derived by Finite Element Method, covering Bastar craton and adjacent region highlighting key 

structural features. GL1-GL11 represent the prominent gravity lows, while GH1-GH7 gravity high zones. Bold black line denotes the 

boundary of the Bastar craton, and white solid line represents the basin boundaries. NW-SE profile AA’, is marked, along which 2.5D 

gravity modelling has been carried out. MR: Mahanadi Rift, GR: Godavari Rift, EGB: Eastern Ghats Belt. 

 

The resultant residual gravity anomaly map is shown in Figure 

5. It is interesting to observe that the boundaries of various 

litho-tectonic units are brought out very clearly. The central and 

northern parts of the Bastar craton are mostly associated with 

isoloated gravity highs (GH1, GH2 and GH3) corresponding to 

un-classified metamorphic rocks (Figure 2) concealed below 

the sedimentary succession. A notable gravity high (GH4) in 

south-eastern and eastern part of the study area aligns with the 

Eastern Ghats Belt (EGB). The Bhoopalapatnam and 

Karimnagar granulitic belts, which are situated on either side 

of the Godavari Rift (GR) basin, are characterized by 

conspicuous gravity highs (GH5 and GH6 respectively). 

Similarly, the high-order gravity anomaly (GH7) on the NW 

part of the study region reflects the Deccan Trap cover.  

The basins of the craton, such as Chhattisghar (Ch B), Khariar 

(KB), Indravati (IB), Ampani (AB), Sabari (SB) and Abujhmar 

(Ab B), correspond to gravity low anomalies (GL1, GL2, GL3, 

GL4, GL5 and GL6 respectively). However, over the Pakhal 

Basin (PB), we observe a gravity high anomaly, as the high-

density Bhopalpatnam granulitic rocks are in contact with the 

sedimentary succession. A prominent gravity low (GL7) 

located in south-western part of study area is sandwiched 

between the conspicuous gravity high GH5 and GH6 . This 

prominent gravity low zone corresponds to the Gondwana 

sedimentary rock accumulation in the Godavari Rift Basin 

(Vasanthi, 2025). Similarly, Gondwana sediments of Wardha 

sub-basin and Satpura sequence are associated with gravity 

lows GL8 and GL9 respectively. Similarly, a notable gravity 

low (GL10) corresponds to Mahanadi Gondwana sediments.  

An interesting finding of the present study has been the 

delineation of gravity highs (GH1 and GH3) in Chhattisgarh 

Basin, which contrasts with the usual gravity low association 

with sedimentary basins. This positive bias might be explained 

by the geological influence of adjacent Kotri-Dongarhgarh 

mobile belt. Geological mapping of the craton (Figure 2) shows 

that the Kotri-Dongarhgarh orogenic supracrustal rocks occurs 

along the Chhattisgarh basins eastern edge, even though the 

orogen trends north to south. Therefore, the present study 

reveals the continuation of the Kotri-Dongarhgarh belt beneath 

the Chhattisghar Basin.  

As discussed earlier, the cluster of gravity lows (GL2 to GL6) 

characterizing the SE portion of the craton due to the presence 

of number of basins like Khariar (KB), Ampani (AB), Indravati 

(IB), Sabari (SB) and Abujhmar (Ab B). It is important to note 

that this low anomaly stretches beyond the mapped boundary 
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of the craton, towards EGB. Despite the high grade 

metamorphic nature of this terrain, the persistence of this 

gravity low (as marked by blue dotted line; GL11) raises the 

possibility of under-thrusting of Bastar sediments beneath 

EGB. 

EDGE ENHANCEMENT TECHNIQUES 

Precise imaging of crustal architecture plays important role in 

tectonic reconstruction and resource exploration. The Bouguer 

anomaly map or residual map without edge constraints, often 

struggle to delineate sharp crustal boundaries. It has often been 

used to resolve lateral heterogeneities and sharp crustal 

boundaries (Blakely and Simpson, 1986; Hsu et al., 1996). The 

different edge enhancement methods used in this study are 

Horizontal Gradient, First Vertical Derivative and Analytical 

Signal. 

Horizontal Gradient Method 

This technique works on the principle of identifying local 

maxima in the gravity data (Cordell and Grauch, 1985). The 

local maxima do not mean the gravity high or low, rather it 

indicates the abrupt transition in gravity as we move along 

surface.  

HG = √(
∂g

∂x
)
2

+ (
∂g

∂y
)
2

 

 The mathematical formula of horizontal gradient method 

suggests that the method is more concern about the spatial 

gradient than the absolute values. Which means this method 

focuses on increasing and decreasing value of gravity in both x 

and y direction, and mark the area as local maxima where the 

transition is strongest, which represents the possible edge or 

boundary of the associated feature (Chowdari et al., 2017, 

2022). The aim of using the method for this study is to highlight 

structural edges such as fault, lineament and rift boundaries.  

Figure 6 shows horizontal gradient map of residual gravity data 

over Bastar craton. The most significant features on the map 

are: NW-SE trending gradient maxima HZ1 near Raipur area, 

likely representing a buried fault zone in Chhattisgarh basin 

margin. The strong gravity gradient seen along HZ2, within the 

eastern part of the Bastar craton, trending towards N-S 

direction, marks a faulted boundary between Proterozoic 

sediment cover and adjoining granitic basement. E-W oriented 

lineament in SE part of craton (HZ3), could possibly be a 

tectonic contact between Bastar and EGB. Another gradient 

maxima HZ4 orienting towards NNE-SSW, corresponds to the 

contact between the Bastar craton and the Godavari rift basin. 

A notable fault marked by HZ6 is possibly a structural 

discontinuity between Deccan Province and the supracrustal 

basement rocks. Similarly, HZ7, a NW-SE trending maximum 

gradient, corresponds to a lineament near Mahanadi graben. 

 

 

Figure 6. Horizontal gradient map of the residual gravity anomaly field with marked gravity interpreted faults (HZ1 to HZ7), as shown in 

white colour. 
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First Vertical Derivative Method 

The horizontal gradient method outlines the structural edges by 

detecting lateral density contrast, however, it does not explain 

the extensional depth of the structure. First vertical derivative 

(Milligan and Gunn, 1997; Gönenç, 2014) fills that gap by 

pointing out rapid vertical changes in gravity.  

FVD =
∂g(x, y, z)

∂z
 

This method acts as a high pass filter by calculating rate of 

change of gravity field in vertical direction, which reduces the 

contribution from deeper anomalies and enhance short 

wavelength features, associated with shallow crustal structures. 

Figure 7 shows First vertical derivative map, which reveals a 

more detailed picture of the subsurface, with multiple 

significant lineaments which were not prominent in the 

horizontal gradient map. The lineaments which were 

mentioned earlier are visible in vertical derivative map, with 

additional features trending towards NW-SE direction in NE 

part of Raipur, NNW-SSE oriented lineament in SE part and 

NNE-SSW oriented linear trend, all of which indicate a 

complicated subsurface geology. 

Analytical signal Method 

This method enhances gravity anomaly interpretation by 

combining both horizontal gradient and vertical derivative into 

a single measure (Klingele et al.,1991).  

𝐴𝑆 = √(
∂𝑔

∂𝑥
)
2

+ (
∂𝑔

∂𝑦
)
2

+ (
∂𝑔

∂𝑧
)
2

 

This fusion allows the method to capture the change in all 

directions, and produce a maximum directly above the 

boundary of subsurface density contrasts (Hakim et al., 2006). 

Unlike other edge enhancement techniques which are sensitive 

only in one aspect of anomaly, analytical signal balances both 

lateral and vertical information. This makes it particularly 

useful for outlining geological boundaries in complex crustal 

settings more precisely. Analytical signal map for the present 

study area (Figure 8), reveals some lineaments structures 

mainly in NE and central part of the craton, which were masked 

in previous maps. The boundaries of the entire Bastar craton 

are very well reflected here.

 

 

Figure 7. First-order vertical derivative map of residual gravity anomaly with marked gravity interpreted faults in white color. 
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Figure 8. Analytical signal map of residual gravity anomaly with marked gravity Interpreted faults in white colour. 

 

Figure 9. Density model along Profile AA’ (location shown in Figure 5). (a) shallow crustal structure, and (b) lithospheric structure. 
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2.5D GRAVITY MODELLING 

In order to understand the underlying crustal architecture, 2.5D 

modelling has been carried out along a NW-SE profile AA’ 

cutting across the entire craton and adjacent EGB region 

(Figure 5). As the precise interpretation of gravity anomalies is 

non-unique, and often depends on direct inputs like the nature 

of the underlying rocks and their in-situ densities, we have used 

the available geophysical constraints in this region for different 

crustal layers in terms of their thicknesses and densities 

(Chalapathi Rao et al., 2011; Mandal et al., 2013).  

The resultant best-fit density model (with an error of 0.7) along 

the profile AA’ is shown in Figure 9. The top layer, 

corresponding to Proterozoic sediments, is assigned a density 

of 2.45 g/cm3. This layer is followed by a thin upper crustal 

layer with density 2.67 g/cm3, and mid-crustal layer, 2.75 

g/cm3. This layer is further underlain by a relatively high 

density lower-crustal layer which is assigned a density of 2.9 

g/cm3. Similarly, lithospheric mantle is assigned a density of 

3.3 g/cm3. Moho depth along this profile is taken as ~35 km 

below EGB to ~46 km beneath the sedimentary basins. 

Lithosphere-Asthenosphere Boundary (LAB) has been 

delineated between 100 to 144 km. This study delineated the 

sedimentary formation of the craton beneath the high-grade 

Eastern Ghats Belt (EGB) (Figure 9). 

DISCUSSION AND CONCLUSIONS 

The tectonic framework of the eastern Indian shield, 

particularly along the Bastar craton–Eastern Ghats Belt (EGB) 

interface, provides critical insights into Proterozoic crustal 

dynamics and the structural architecture of ancient continental 

margins. The satellite-derived gravity data analyzed in this 

study brings out clearly the continuation of Proterozoic 

sedimentary sequences of the Bastar craton beneath the high-

grade EGB terrain. The identification of a prominent residual 

gravity low (around –50 mGal) in the south-eastern part of the 

study area, where EGB lithologies dominate the surface 

geology, is a compelling geophysical signature suggestive of 

the presence of low-density crustal materials, which appears 

representing buried Mesoproterozoic sediments such as those 

of the Indravati and Khariar Groups underneath the granulitic 

terrain. These gravity anomalies are consistent with the crustal 

configurations elsewhere in orogenic belts where older 

sedimentary sequences are tectonically buried beneath younger 

or higher-grade metamorphic complexes (Pandey et al., 2014; 

Vasanthi and Singh, 2019; Vasanthi and Santosh, 2023). The 

gravity modeling results strengthen this interpretation by 

revealing steep, east-dipping crustal-scale density boundaries, 

which are indicative of large-scale underthrusting (Figure 9). 

Such configurations are typical of continental collision zones, 

where rigid cratonic blocks are partially underthrusted beneath 

mobile belts, resulting in crustal thickening and complex 

metamorphic overprinting. This tectonic episode is closely 

linked with the evolution of Rodinia supercontinent assembly, 

which involved widespread craton amalgamation and crustal 

reworking across several continental margins (Pandey et al., 

2018; Singh et al., 2025). The development of ductile shear 

zones such as the Terrane Boundary Shear Zone, facilitated this 

crustal stacking, enabling the high-grade EGB rocks to thrust 

over relatively low-grade or un-metamorphosed Proterozoic 

sequences derived from the Bastar craton. Importantly, this 

study contributes to a growing body of evidence that redefines 

the EGB not as an entirely exotic terrane but as a mobile belt 

with genetic and structural ties with the adjacent Indian cratons. 

This re-interpretation has broad implications for models of 

crustal accretion, basin evolution, and tectonothermal 

reworking in the Indian shield, and encourages a re-evaluation 

of similar craton–mobile belt interfaces globally.  
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Earth Day, April 22, 2025 

Abhey Ram Bansal and ASSSRS Prasad 

CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad -500007 (India) 

International Earth Day is celebrated every year on April 22 to 

create awareness about sustainability and environmental issues 

and to encourage individuals and communities to act together. 

The Earth Day celebration started in 1970 across the US 

through rallies and marches to educate the community about 

environmental issues. In 1990, it was celebrated in 141 

countries. In 2016, the Paris Agreement was signed and 

adopted by 195 countries for the Earth Day celebration. The 

activities organised during Earth Day help mobilise public 

support, influence Policies and promote sustainability.  

The Earth has been suffering from the overexploitation of 

natural resources (water, minerals, and hydrocarbons), 

deforestation, and pollution of water, air, and soil. Based on the 

climate model, 2150 GTon of groundwater was depleted 

between 1993 and 2010, resulting in a tilt in the Earth's axis of 

around 31.5 inches (Seo et al., 2023). From the satellite 

altimetry, the global mean sea level rise is reported as about 3.5 

cm/year equivalent to groundwater depletion.  The word 

glaciers which are the source of fresh water, are melting with 

an alarming rate due to anthropogenic activity and climate 

change and total ice mass is lost around 5 % since 2010 (The 

GlaMBIE Team, 2025). Even a slight temperature decrease 

will help to reduce the loss of ice mass. Deforestation also 

inhibits the ecosystem and the availability of fresh air. The 

excessive use of non-renewable energy leads to climate 

change, environmental pollution and unsustainable 

development. This year, Earth Day is celebrated with the theme 

of "Our Power, Our Planet" to increase awareness among 

society and educate them about their responsibility towards 

sustainable goals. The Indian Geophysical Union (IGU) 

celebrated Earth Day with Global Geoscience societies with a 

common statement, "Calls on all the people to work towards a 

future where energy is sustainable and accessible to everyone" 

(Figure 1). The IGU celebrated Earth Day at 21 places across 

India, including universities, IIT’S, colleges, and schools, 

attended by faculty members, students, and community leaders 

(Figure 2). The following activities were organised during the 

Earth Day celebration.  

 Tree plantation (Figure 3 and 4)  

 Awareness rally (Figure 5) 

 Oath ceremony (Figure 6) 

 Human chain (Figure 7) 

 Essay slogan writing (Figure 8)  

 Drawing competition (Figure 9)  

The Earth Day celebration was attended by 3288 members, of 

whom 1501 were female and 10 were differently abled and 294 

plants were planted (Figure 10). 

 

 

Figure 1. Joint statement on Earth Day with other global geoscience societies. 
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Figure 2. Map showing the locations of IGU’s Earth Day celebration. 

 

Figure 3. Tree plantation activity during IGU’s Earth Day celebration. 
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Figure 4. State-wise plantation done during the IGU’s Earth Day celebration. 

   

Figure 5. Awareness rally during IGU’s Earth Day celebration. 
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Figure 6. Oath ceremony during IGU’s Earth Day celebration. 

    

 

Figure 7. Human chain during IGU’s Earth Day celebration. 
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Figure 8. Essay competition and display of slogans during IGU’s Earth Day celebration. 

    

  

Figure 9. Drawing competition during IGU’s Earth Day celebration. 
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Figure 10. The Number of participants who attended the IGU’s Earth Day celebration and the number of plants planted.  

Acknowledgements 

The Indian Geophysical Union is thankful to the Ministry of 

Earth Science, Government of India, for the financial support. 

We are also grateful to the management and Program 

coordinators of schools / colleges / Universities / IITS, for 

successfully organising the program. We are thankful to Ms G. 

Swaroopa and Mrs G. Swapna for helping us to prepare the 

report. 

 

References: 

Seo, K.-W., Ryu, D., Eom, J., Jeon, T., Kim, J.-S., Youm, K. et al., 

2023. Drift of Earth's pole confirms groundwater depletion as a 

significant contributor to global sea level rise 1993–2010. 

Geophys. Res. Lett., 50, e2023GL103509. 

https://doi.org/10.1029/2023GL103509 

The GlaMBIE Team. Community estimate of global glacier mass 

changes from 2000 to 2023. Nature, 639, 382–388 (2025). 

https://doi.org/10.1038/s41586-024-08545-z

 

Received on: 15-05-2025;  Revised on: 23-05-2025 ; Accepted on: 23-05-2025 

472

2687

119
294

Total Teachers

Total Students



The Journal of Indian Geophysical Union (JIGU), a SCI Journal published 
bimonthly by the Indian Geophysical Union (JIGU), is an inter disciplinary 
journal from India that publishes high-quality research in earth sciences with 
special emphasis on the topics pertaining to the Indian subcontinent and the 
surrounding Indian Ocean region. The journal covers several scientic 
disciplines related to the Earth sciences such as solid Earth Geophysics, geology 
and geochemistry, apart from marine, atmosphere space and planetary sciences. 
J-IGU welcomes contributions under the following categories : 


	FORMTED PAPERS
	COVER 2

	contents July 2025
	Paper -1 Laxmidhar Behera_
	paper -2 Dewashish Kumar
	paper -3 Vivek Kumar Pandey
	paper -4 Anurag Tiwari
	paper -5 Tamil Selvi
	paper-6 Vasanthi (2)
	paper 7 Earthday
	FORMTED PAPERS

