
Modifying Hagen-Poiseullie’s equation for an inclined porous media with varying porosity

231

Modifying Hagen-Poiseullie’s equation for an inclined porous 
media with varying porosity

Alabi O.O.* and Olaleye K.O
Solid Earth Physics Research Laboratory, Department of Physics, Osun State University,Osogbo, Nigeria.(+2348035028760).

*Corresponding Author: geosciencealabi@yahoo.com

ABSTRACT
Mode of transport of fluid in soil is the basis for soil environmental engineering especially in transport of 
contaminants in subsurface groundwater. Volume flux (q) of water through media of different porosities in 
an inclined pipe for different angles of inclination (α) was determined. The patterns of flow were determined 
from q-α curve for two forms of porosity change. The porosity change ∆ϕ is positive when moving from 
aless permeable to amore permeable medium in an inclined pipe, while it is negative when moving from a 
more permeable medium to aless permeable medium in an inclined pipe. It was observed that (-∆ϕ) acts as 
a damping factor for turbulent flow, while (+ ∆ϕ) increases the rate of flow vis-à-vis turbulent flow. Also, 
porosity difference, ∆ϕ was introduced to an already established Hagen-Poiseullie’s equation in order to 
modify it for an inclined porous media of different porosities.
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INTRODUCTION

The greatest danger of groundwater pollution in subsurface 
including sewage sludge, leaking sewers, and polluted water 
from refuse disposal sites. Wherever any groundwater 
supply well is constructed, a viable groundwater measure 
must be taken to prevent contamination by pollutant 
(Hiscock et al., 1995). One approach is to control the 
rate of flow (or seepage) or change the direction of the 
flow of contaminated fluid by using appropriate sand 
layers of variable porosities (Leonard, 1962 and Silliman 
et al., 1998).

It should be appreciated that soil itself serves as a filter, 
and its ability to do so depends on its physical attributes 
such as permeability and porosity (Henry, 2003). Natural 
filters have been used as landfill liners to reduce the 
movement of contaminated fluid from solid waste landfill 
and waste water disposal into subsurface. (Boynton and 
Daniel, 1985; Foreman and Daniel, 1986; Benson and 
Daniel, 1990; Benson et al., 1994; Benson and Trast, 
1995; Rowel et al., 1995, Boadu, 2000 and Henry, 2005). 
However, a graded filter serves better; it consists of layers of 
porous materials of different porosities or permeabilities in 
which the soil particles in a particular layer are coarser than 
that in the preceding layer (Cedergreen, 1976). It should 
be noted that the selection of a good graded filter as a 
protective layer or a seepage control medium depends on its 
properties, which can only be determined experimentally. 
Thus, there is a need for better understanding of the law 
which governs the flow of fluid through these media which 
are used as graded filter and modify it for an inclined porous 
media of different porosities. 

Darcy’s law

The application of Darcy ’s law enables hydraulic 
conductivity to be determined, from which permeability 
can be computed by Hubert King relation (Demenico and 
Schwartz,2000). 

The results of Darcy's experiments indicated that the 
rate at which a fluid moves through a porous medium 
(Q) is proportional to the difference in hydraulic head of 
the water along the column and the characteristics of the 
porous medium and the column length.

This relationship is known as Darcy's law:

	 	
(1)

Where Q is the rate of water flow

Pressure Drop and Head Loss

A quantity of interest in the analysis of pipe flow is the 
pressure drop ∆P since it is directly related to the power 
requirements of the fan or pump to maintain flow. We note 
that dP/dx = constant, and integrating from x = x1where 
the pressure is P1 to x = x1+L where the pressure is P2 gives

	 	
(2)

Substituting into the Vavg expressions, the pressure drop 
can be expressed as 

Laminar flow 	(3)
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The symbol ∆ is typically used to indicate the 
difference between the final and initial values, like ∆y = 
y2 - y1. But in fluid flow, ∆P is used to designate pressure 
drop, and thus, it is P1 – P2. A pressure drop due to viscous 
effects represents an irreversible pressure loss, and it is 
called pressure loss ∆PL to emphasize that it is a loss (just 
like the head loss hL, which is proportional to it).

Note that the pressure drop is proportional to the 
viscosity µ of the fluid, and ∆P would be zero if there were 
no friction. Therefore, the  drop  of  pressure  from  P1 to 
P2 in  this  case  is  due  entirely  to  viscous effects, and 
represents the pressure loss  ∆PL when a fluid of viscosity  
m flows through a pipe of constant diameter  D and length  
L at average velocity Vavg.

In practice, it is found convenient to express the 
pressure loss for all types of fully developed internal flows 
(laminar or turbulent flow, circular or noncircular pipes, 
smooth or rough surfaces, horizontal or inclined pipes) as

Pressure loss:  	 (4)

Where ρVavg/2 is the  dynamic pressure and f is the  Darcy 
friction factor,

	 	
(5)

It is also called the Darcy–Weisbach friction  factor.  It 
should not be confused with the friction coefficient called 
the Fanning friction factor.

By solving for f gives the friction factor for fully 
developed laminar flow in a circular pipe,

Circular pipe, laminar: 	 (6)

This equation shows that in laminar flow, the friction 
factor is a function of the Reynolds number only and is 
independent of the roughness of the pipe surface.

In the analysis of piping systems, pressure losses 
are commonly expressed in terms of the equivalent fluid 
column height, called the head loss hL. Noting from fluid 
statics that ∆P = ρgh and thus a pressure difference of ∆P 
corresponds to a fluid height of h = ∆P/ρg, the pipe head 
loss is obtained by dividing ∆PL by ρg to give

Head loss: 	 (7)

The head loss hL represents the additional height 
that the fluid needs to be raised by a pump in order to 
overcome the frictional losses in the pipe. The head loss 
is caused by viscosity, and it is directly related to the wall 
shear stress are valid for both laminar and turbulent flow 
in both circular tan noncircular pipes, but  is valid only 
for fully developed laminar flow in circular pipes. Once the 

pressure loss (or head loss) is known, the required pumping 
power to overcome the pressure loss is determined from

	 (8)
where V is the volume flow rate and m is the mass flow 
rate.

For horizontal pipe:  (9)

Then the volume flow rate for laminar flow through a 
horizontal pipe of diameter D and length L becomes

	
(10)

This equation is known as Poiseuille’s law, and this 
flow is called Hagen– Poiseuille flow in honor of the works 
of G. Hagen (1797–1884) and J.Poiseuille (1799–1869) on 
the subject. 

Inclined Pipes

Relations for inclined pipes can be obtained in a similar 
manner from a force balance in the direction of flow. The 
only additional force in this case is the component of the 
fluid weight in the flow direction, whose magnitude is 

	 (11)

where θ is the angle between the horizontal and the flow 
direction. The force balance now becomes

 (12)

which results in the differential equation

	 	
(13)

Following the same solution procedure, the velocity profile 
can be shown to be

	 	
(14)

It can also be shown that the average velocity and the 
volume flow rate relations for laminar flow through inclined 
pipes are, respectively,

	
(15)

which are identical to the corresponding relations for 
horizontal pipes, except that ∆P is replaced by ∆P - ρgL 
sin θ. Therefore, the results already obtained for horizontal 
pipes can also be used for inclined pipes provided that ∆P 
is replaced by ∆P- ρgL sin θ. Note that θ >0 and thus 
sin θ > 0 for uphill flow, and θ<0 and thus sin θ <0 for 
downhill flow.
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In inclined pipes, the combined effect of pressure 
difference and gravity drives the flow. Gravity helps 
downhill flow but opposes uphill flow. Therefore, much 
greater pressure differences need to be applied to maintain 
a specified flow rate in uphill flow although this becomes 
important only for liquids, because the density of gases is 
generally low. In the special case of no flow (V = 0), we 
have ∆P = ρgL sin θ, which is what we would obtain from 
fluid statics.

Material and Methods

Sizeable quantities of these samples were brought to the 
laboratory after washing and rinsing in order to remove 
the organic particles and unwanted grains.  Thereafter, the 
sand samples were sun dried and later placed in an oven for 
thirty minutes at temperature of 1200 C.  Afterwards, the 
samples were allowed to cool down, the stony particles were 
removed. Three different sieves of sizes 63,150 and212μm 
were used to sieve the available sand samples in order to 
obtain sample of different grain size.

Determination of porosity

The porosity of each sample was determined by volumetric 
approach.  In the laboratory measurement of porosity, it 
is necessary to determine only two basic parameters (bulk 
volume and grain volume). 

Bulk volume = grain volume + pore Volume     

	 	
(16)

In this research, bulk and grain or matrix volume were 
determined volumetrically by measuring 3ml of dried sand 
sample using a 10ml measuring cylinder.  It was ensured 
that the measuring cylinder was tapped with a solid object 
and the sand inside gotre-arranged and compacted before 
the value of the volume was recorded.

Porosity can be determined as follows:
	 Volume of sand (bulk volume)	 = A (mL)
	 Volume of water	 = B (mL)

	 Volume of mixture of water and sand 	 = C (mL)

	
(17)

Determination of volume flux at different angles 
of inclination

The experimental setup consisted of a big transparent 
cylindrical pipe 108.5cm long with radius 2.23cm as inlet 
pipe and five small equal transparent pipe. Each of the 
outlet pipe was joined to the centre of the circular plastic 
plate on the top of the inlet pipe at different angles q of 
00, 200, 500, 70and 900 from the point normal or line. To 
serve as control experiment, water was allowed to flow 
through the empty inlet pipe and outlet pipe for a period 
of 60sec and the discharged volume of water at each outlet 
was collected and measured with measuring cylinder.  This 
was done at different tilting angle or angle of inclination 50, 
100, 150 and 200. Therefore, the inlet pipe and outlet pipes 
were filled with the same sample at a time and the volume 
of water discharged through each outlet was measured.  
This was measured in each outlet for different angle of 
inclination α and the same was repeated for other samples. 

The sample in the inlet pipe was later changed in 
turn and the volume of water discharged in the outlet in 
different cases were collected and measured directly with 
measuring cylinder. The measuring flux q (ms-1)   or specific 
discharge was then computed from the volumetric flow 
rate Q (m3s-1) by dividing it with the cross sectional area 
2.83x10-5m2 of the outlet pipe. 

Results and Discussion

Tables 1, 2 and 3 show the volume flux at different angle 
of outlets when fluid flows from more permeable medium 
to a less permeable medium for all inclination angles 
(cases 1, 2 and 3).Tables 4, 5 and 6 show the volume flux 
at different angles of outlet when fluid flows from a less 
permeable medium to a more permeable medium for all 
inclination angles (cases 4, 5, and 6).

Table  1. Volume flux at different angles of inclination α (case 1)

Angle of 
inclination  
α (degree)

Outlet 1
q × 10-6

    (ms-1)

Outlet 2
q × 10-6

    (ms-1)

Outlet 3
q × 10-6

    (ms-1)

Outlet 4
q × 10-6

    (ms-1)

Outlet 5
q × 10-6

   (ms-1)

0 0 0 0 0 0

5 0.04 0.0165 0.0047 0 0

10 0.0483 0.0377 0.0188 0 0

15 0.0518 0.0483 0.0353 0.0106 0

20 0.1142 0.1095 0.488 0.0247 0
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Table  2. Volume flux at different angles of inclination α (case 2)

Angle of 
inclination  
α (degree)

Outlet 1
q × 10-6

    (ms-1)

Outlet 2
q × 10-6

    (ms-1)

Outlet 3
q × 10-6

    (ms-1)

Outlet 4
q × 10-6

    (ms-1)

Outlet 5
q × 10-6

   (ms-1)

0 0 0 0 0 0

5 0.00624 0.0188 0.0094 0 0

10 0.0907 0.0459 0.0283 0.0012 0

15 0.1248 0.0742 0.0612 0.013 0

20 0.1543 0.1272 0.073 0.0306 0

Table  3. Volume flux at different angles of inclination α (case 3)

Angle of 
inclination  
α (degree)

Outlet 1
q × 10-6

    (ms-1)

Outlet 2
q × 10-6

    (ms-1)

Outlet 3
q × 10-6

    (ms-1)

Outlet 4
q × 10-6

    (ms-1)

Outlet 5
q × 10-6

   (ms-1)

0 0 0 0 0 0

5 0.0789 0.0236 0.013 0 0

10 0.1107 0.053 0.0436 0.0024 0

15 0.1684 0.086 0.0707 0.0247 0

20 0.179 0.1398 0.0836 0.0836 0

Table  4. Volume flux at different angles of inclination α (case 4)

Angle of 
inclination  
α (degree)

Outlet 1
q × 10-6

    (ms-1)

Outlet 2
q × 10-6

    (ms-1)

Outlet 3
q × 10-6

    (ms-1)

Outlet 4
q × 10-6

    (ms-1)

Outlet 5
q × 10-6

   (ms-1)

0 0 0 0 0 0

5 0 0.0082 0.0094 0.0059 0.0012

10 0.0012 0.0212 0.00283 0.0071 0.0024

15 0.0035 0.0247 0.0436 0.0141 0.0047

20 0.0047 0.0165 0.0518 0.0306 0.0071

Table  5. Volume flux at different angles of inclination α (case 5)

Angle of 
inclination  
α (degree)

Outlet 1
q × 10-6

    (ms-1)

Outlet 2
q × 10-6

    (ms-1)

Outlet 3
q × 10-6

    (ms-1)

Outlet 4
q × 10-6

    (ms-1)

Outlet 5
q × 10-6

   (ms-1)

0 0 0 0 0 0

5 0.0024 0.0071 0.0106 0.0106 0.0035

10 0.0035 0.0082 0.0294 0.0283 0.0067

15 0.0059 0.0082 0.0495 0.0448 0.0071

20 0.0071 0.0071 0.0542 0.0495 0.0141

Table  6. Volume flux at different angles of inclination α (case 6)

Angle of 
inclination  
α (degree)

Outlet 1
q × 10-6

    (ms-1)

Outlet 2
q × 10-6

    (ms-1)

Outlet 3
q × 10-6

    (ms-1)

Outlet 4
q × 10-6

    (ms-1)

Outlet 5
q × 10-6

   (ms-1)

0 0 0 0 0 0

5 0.0047 0.0059 0.0118 0.013 0.0071

10 0.0094 0.0094 0.0306 0.0342 0.0094

15 0.0106 0.0118 0.0483 0.0506 0.0118

20 0.0141 0.0153 0.013 0.0683 0.0612
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Figure 1  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation 
q= 7E-06α2 - 0.001α + 0.038 

Figure 2 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation   q = 1E-05α2 - 0.001α + 0.057

Figure 3  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = 1E-05α2 - 0.001α+ 0.071

Figure 4  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q =-4E-06α2 + 0.000α + 0.000

Figure 5 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation q = -4E-06α2 + 0.000α + 0.001

Figure 6  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = -3E-06α2 + 0.000α+ 0.003

Figure 1. CASE 1 FOR α = 50                                          Figure 2. CASE 2 α = 50

Figure 3. CASE 3 α = 50                                         Figure 4. CASE 4 α = 50

Figure  5. CASE 5 α = 50                                                                           Figure 6. CASE 6 α= 100
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Figure 7 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume flux 
is related with angle of inclination of polynomial of order 2, 
with relation, with relation  q =2E-06α2 - 0.000α + 0.05

Figure 8 shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = 1E-05α2 - 0.001α + 0.087

Figure 9 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation q = 9E-06α2 - 0.002α + 0.104

Figure 10  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = -1E-05α2 + 0.001α + 0.003       

Figure 11  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q=  -1E-05α2 + 0.001α - 0.001

Figure 12 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation q  = -1E-05α2 + 0.001α + 0.003

Figure 7. CASE 7 α= 100                                      Figure 8. CASE 8 α= 100

       Figure 9. CASE 9 α= 100                                         Figure 10. CASE 10α= 100

               Figure 11. CASE 11 α= 100                                          Figure 12. CASE 12 α= 100
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Figure 13 shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = -5E-06α2 - 0.000α + 0.052

Figure 14 shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = 3E-06α2 - 0.001α + 0.119

Figure 15 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation q = 9E-06α2 - 0.002α + 0.157

Figure 16  show that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = -2E-05α2 + 0.001α + 0.003 

Figure 17 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation q = -2E-05α2 + 0.001α - 0.002

Figure 18  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = -2E-05α2 + 0.001α + 0.001

Figure 13. CASE 6 α= 150                                      Figure 14. CASE 6 α= 150

Figure 15.  CASE 8 α= 150                                     Figure 16. CASE 9 α= 150

Figure 17.  CASE 10 α= 150                                   Figure 18. CASE 11 α= 150
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Figure 19 shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q =-0.000α2 + 0.010α + 0.072 

Figure 20 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with relation q =-2E-06α2 - 0.001α + 0.156

Figure 21  Show that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q =-9E-07α2 - 0.001α + 0.179 

Figure 22  shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = -2E-05α2 + 0.001α - 0.000

Figure 23 shows that when fluid flows from a lower 
porous medium to a higher porous medium, the volume 
flux is related with angle of inclination of polynomial of 
order 2, with q = -2E-05α2 + 0.001α - 0.003

Figure 24 shows that volume flux is related with angle 
of inclination of polynomial of order 2, that is volume flux 
increases with increasing angle of inclination, with relation  
q = 8E-06α2 - 5E-05α + 0.012.

Figure 19. CASE 6 α= 200                                     Figure 20. CASE 7 α= 200

Figure 21. CASE 8 α= 200                                      Figure 22. CASE 9 α= 200

Figure 23. CASE 10 α= 200                                    Figure 24. CASE 11 α= 200
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The pattern of flow can be inferred from the correlation 
R2 for best fitting for each graph which indicates that as 
porosity change increases, the correlation coefficient (R2) 
for polynomial for each cases were presented in table 7. 
The porosity changes in this work are of two forms. The 
first one is the porosity change when fluid flows from 
less permeable porous medium (ϕ1)  to more permeable 
medium (ϕ2) while the other one is when fluid flows from 
more permeable medium (ϕ2) to less permeable medium 
(ϕ1). The two different forms of the porosity changes can 
be represented by (+∆ϕ) and (-∆ϕ) respectively.  The first 
one leads to increases in flow rate, while the second one 
toflow rate in porous media decreases.  This implies that, 
the +∆ϕ promotes turbulent flow in porous media while 
-∆ϕ promotes laminar flow in porous media.  In order 
words, +∆ϕ enhances turbulent flow while -∆ϕ damped 
turbulent flow force.

From the plots of volume flux against outlet angles, 
it is observed that, volume flux tends towards linearity 
proportional to angle of outlets when fluid flows from 
more permeable medium to a less permeable medium for 
all inclination angles (cases 1, 2 and 3).The relationship 
between volume flux and angle of outlets follows a pattern 
of polynomial order 2, when fluid flows from a less 
permeable medium to a more permeable medium for all 
inclination angles (cases 4, 5, and 6).

Also, it is observed that for all inclination angles of 
α, as porosity change increases, the pattern of relationship 
of plots of volume flux against outlet angles is tending 
towards a polynomial of order 3 from order 2.  This can 
be inferred from the correlation coefficient (R2) of the plots 
of volume flux against outlet angles.  This could be as a 
result of increase in flow rate caused by the increase in 
differences between the media porosities. This pattern is 
more pronounced in 100 and 150 inclination angles. 

CONCLUSION

The purpose of this work is to establish an equation to 
determine fluid flow rate and volume flux in inclined 
heterogeneous porous media in subsurface. It is observed 
that there are different flow patterns in porous media for 
different porosities change (∆ϕ).  The pattern of flow is 
tending more towards polynomial of order 3 as the porosity 
change (∆ϕ) increases.  This can be inferred from the 
correlation R2 for best fitting for each graph which indicates 
that as porosity change increases, the correlation coefficient 
(R2) for polynomial of order 2 decreases.

Also, equation 15 above shows only the effects of 
gravity g, and pressure difference ∆P on the flow of fluid 
in an inclined pipe with no porous media.  However, 
the effect of porosity difference, ∆ϕ of the porous media 

Table 7. Summary of the porosity difference correlation coefficient

Cases    -∆ф2   R2    +∆ф      R2

α = 5°
1 0.080 0.983 40.080 0.95
2 0.114 0.937 50.114 0.939
3 0.170 0.882 60.170 0.763

Cases    -∆ф2   R2    +∆ф       R2

α = 10°
1 0.080 0.969 40.080 0.83
2 0.114 0.967 50.114 0.778
3 0.170 0.929 60.170 0.627

Cases    -∆ф2   R2    +∆ф       R2

α = 15°
1 0.080 0.973 40.080 0.819
2 0.114 0.948 50.114 0.693
3 0.170 0.939 60.170 0.665

Cases    -∆ф2   R2    +∆ф        R2

α = 20°
1 0.080 0.461 40.080 0.465
2 0.114 0.948 50.114 0.68
3 0.170 0.939 60.170 0.737
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could be introduced to the problem whenever the pipe is 
filled with porous media of different porosities. This is an 
improvement on the Hagen-Poiseullie’s equation. Thus, 
equation 15 becomes

	
(18)

The porosity change ∆ϕ is positive when moving from 
less permeable to more permeable medium in an inclined 
pipe, while it is negative when moving from more permeable 
media to less permeable medium in an inclined pipe(-∆ϕ) 
acts as a damping factor for turbulent flow, while (+ ∆ϕ) 
increases the rate flow vis-à-vis turbulent flow.  This work 
could be of help in modeling the various mechanisms of 
water flow and contaminant transport along pathways in 
the soil and groundwater for contamination prevention 
and remediation.
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