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AbstRAct
We propose a simple technique of robust estimation of first order derivative of a discrete set of noisy 
measurements. The proposed technique uses conventional numerical tools, such as the first order finite 
difference and the natural cubic spline on evenly spaced noisy dataset and provides robust estimation of the 
first order derivative. We also propose simple techniques in estimating noise level in the measured data. This 
allows designing the estimated derivative dependent on the noise level in the measured data. We conducted 
numerical experiments using the proposed technique on synthetic data contaminated with random noise. 
Results from numerical experiment demonstrate applicability of the technique to the data contaminated with 
a moderate level of noise. We validate the proposed technique in estimating the temperature gradient of a 
water column from a set of noisy measurements of temperature versus depth at the northern Gulf of Mexico. 
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INtRODUctION

Derivative analysis often becomes an essential exercise 
in various disciplines of earth sciences. The difficulty, 
one often faces, is lack in robustness in estimating 
derivative due to the presence of noise in the measured 
data. To circumvent such difficulty there, in fact, are 
many numerical methods which claim not only to provide 
improving precision (Lyness and Molar, 1967; Lele, 1992; 
Qu, 1996; Shirashi et al., 2007), but also to provide the 
robustness in the estimating derivative (Anderssen and 
Bloomfeld, 1974; Cullum, 1971; Wei and Hon, 2005; 
Chartrand, 2011; Roy, 2015, 2017). Majority of those 
schemes, as mentioned in the cited literature, have been 
presented excellently with a full mathematical rigor, but 
unfortunately such presentations are inconsequential for 
the researchers, who are not strongly mathematically 
inclined. On the other hand, a large section of researchers, 
widely across many scientific fields, are comfortable 
with the use of a simple difference equation, and the 
interpolation technique while estimating derivative. The 
major motivation of the present work is to reduce the 
communication gap between an excellent theoretician 
and an avid practitioner in understanding the issue of 
computational instability in derivative estimation and to 
provide the necessary remedial measure.

We demonstrate, in this paper, that an appropriate use 
of a difference equation and selection of an appropriate 
interpolation technique could be the only two simple 
elements required in the robust estimation of evenly spaced 
(mild to moderate level) noisy data. We also demonstrate 

how the ordeal that an unassuming researcher often faces 
while estimating the derivative of evenly spaced measured 
data, using a simple difference scheme. We conducted 
numerical tests using the proposed scheme on noise 
contaminated synthetic data in order to demonstrate the 
applicability of the scheme in estimating derivative of a 
set of evenly spaced noisy measurements. We next apply 
the proposed technique in delineating temperature gradient 
of an ocean water column from northern Gulf of Mexico. 

theORetIcAl bAcKGROUND

In an exercise of estimating derivative the premise that 
we rely on is that the measured data is actually the 
sample values of a continuous and regular function which 
is continuously differentiable. Suppose that f(x), defined 
within an interval [a,b], is one such function such that 
within a small neighborhood around x the function f(x) 
can be, decomposed via Taylor series, written as 

 (1)

 (2)
where h is a small perturbation in x, f(1), f(2) and f(3) are the 
first, second and the third order derivatives of the function 
f(x) respectively. Using equations (1) and (2) following three 
difference schemes can be designed to estimate the first 
order derivative f(1). 
Forward difference (I): 

 (3)
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Backward difference (II):

 (4)
Central difference (III):

, (5)
where the symbol ‘Big O’ in the right hand side of the above 
three schemes indicates that the error in the precision 
of estimating derivative is proportional to either h or h2; 

F
hD , B

hD  and C
hD  denote the forward, backward and central 

difference operator respectively. If h is small, say a fraction 
lies between 0 and 1, then the approximation error for the 
central difference scheme is much smaller compared to 
the other two schemes, as stated. Note that these are not 
the only difference schemes in estimating the first order 
derivatives. There are higher order schemes as well, which 
offer even much smaller approximation error. One would 
be tempted enough, in the light of equations (3) to (5), to 
carrying out measurements as closely as possible; or in 
other words, maintaining a small data interval, in order to 
achieve a high level of accuracy in estimating derivative. 
One would even argue that the smaller the sampling 
interval in the measurements, larger will be the frequency 
bandwidth in the measured signal, and hence one should 
expect a better outcome in estimating derivative of finely 
sampled data. Such an expectation remains achievable if 
the set of measurements is completely noise free. Situation, 
however, changes dramatically the moment a small 
amount of random noise is incorporated in the measured 
data. To elucidate it, suppose that the true sampled data 
f(xi); i=1,2,...,n contain random noise e(xi) with the noise 

amplitude (in terms of r.m.s value) d during measurement. 
Denote the noise contaminated data as fd(xi) which is equal 
to f(xi) + e(xi), where e(xi) corresponds to the noise part. 
The index i denotes the i-th instance. Any of the difference 
operators, as mentioned above, can be used to estimate 
the derivative. Suppose that the operator C

hD  is used in 
estimating derivative. Then 

 (6)
On what follows, the error in estimating the derivative 

is now the sum of two components; one is the loss of 
precision due to the choice of difference operator, which 
is often termed as consistency error and the other is due 
to the noise part, commonly called as perturbation error. 
The noise in data can be realized as wiggles overlain the 
otherwise smooth data and, supposedly, describe a bounded 
variation. In the light of equations (3) – (5) the consistency 
error can be expressed as a non-decreasing function  
j (h), such that 0= j (0) < j (h) (Lu and Pereverzev, 2006). 
The perturbation error which arises due to the noise part 
is, however, proportional to d/h. Therefore, as the data 
interval h is becoming small the approximation error due 
to the loss of precision falls off, but the perturbation error 
increases in a faster rate. To visualize the effect we give 
a numerical example, considering a bell-shaped function 
exp[–(x–m)2/2s2], with m=0.5 and s=0.02, defined within 
an interval [0,1]. The analytical expression of the first 
order derivative of the bell-shaped (or Gaussian) function 
is given as –(x–m)2/2s2 exp[–(x–m)2/2s2]. The bell-shaped 
function is digitized with different sampling intervals, 

Figure 1. Plot of synthetic response (solid line) and the 2% (uniform deviate) random noise contaminated data (open circle). 
Sampling interval is 0.02. 
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Figure 2. Plot of the analytical first order derivative (thick solid line) of synthetic response (Figure 1) and the estimated ones 
using finite difference schemes for various sampling intervals 0.01 (thin black solid line), 0.02 (thick gray solid line), 0.03 (thick 
black broken line) and 0.04 (black dotted line).

such as 0.01, 0.02, 0.03 and 0.04, and the digitized data 
are contaminated with uniformly distributed random 
noise with a standard deviation (s) of 0.02. However, for 
the sake of clarity only the noise contaminated data (open 
circle) corresponding to the sampling interval 0.02 and 
the theoretical response (solid line) and are presented in 
Figure 1. The figure clearly depicts a realistic situation of 
measured noisy data. The estimated first order derivative 
using the difference schemes (I and II for the end points 
and III for all other points) and the analytical response 
of derivatives corresponding to three different sampling 
intervals, as mentioned in the foregoing text, are presented 
in Figure 2. Consideration of the central difference scheme, 
except at the end points, for derivative estimation is 
prompted by the fact that it provides an accurate estimation 
of derivative than the forward and the backward difference 
method as truncation error falls of in the power of 2 with 
respect to the data interval. Note that with the decreasing 
sample interval, especially at 0.01, the error due to noise 
component dominates substantially.  

However, noise exaggeration is not significant 
corresponding to the relatively coarse sampling interval 
(0.04). On the other hand, loss of precision due to 
coarsening becomes prominent. Results from the numerical 
experiment with noise contaminated synthetic data 
corresponding to four distinct sampling intervals clearly 
suggest that the instability issue in the derivative 
estimation using a difference scheme can be addressed 
by increasing the sampling interval or in other words by 
coarsening the grid while discarding some of the measured 

data. If such a coarsening can be controlled using the noise 
level in data (Groetsch, 1991; Ramm and Smirnova, 2001; 
Lu and Pereverzev, 2006) then a sense of regularization is 
implied in estimating derivative. 

Groetsch (1991) establishes that the regularization in 
derivative estimation using forward and backward difference 
schemes is possible if the data spacing h is proportional to 
√d. Ramm and Smirnova (2001) suggest that the sampling 
interval h should be proportional to dg, where 0<g<1 in 
order to ensure regularization in a difference scheme to 
estimate the first order derivative. Lu and Pereverzev (2006), 
however, propose a strategy in determining an optimal data 
spacing in the finite difference based derivative estimation, 
which is somewhat complicated and computationally 
involving. According to Lu and Pereverzev (2006) an 
optimal data spacing, say *h , would be the one which 
satisfies following condition 

Condition: Suppose that {hj} for all j=1,2... is a 
sequence of spacings of a difference grid. A spacing *h  
would be an optimal spacing if it is the maximum of 
all hj in the sequence so that the discrepancy between 
the estimated derivative (using any difference scheme) 
corresponding to hj and all other estimated derivative 
previous to the j-th one must be less than or (at least) equal 
to 2al d(1/hj+1/hi) for i=1,2,...,j, where al is the absolute 
sum of the coefficients of an l-th order difference equation, 
such as . For example, with the first order difference 
scheme l=1, and the coefficients are c-1,c0,c1. 

However, Hanke and Scherzer (2001) argue against 
regularizing computational regime by means of a coarse 
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discretisation with a view point that discarding data in a 
grid, in fact, causes loss of information. They also point 
out that the finite difference approximation essentially 
renders to the use of piecewise linear or constant functions. 
They propose to take the route of determining a smoothing 
function which satisfies the constraint of minimization of 
an error function, defined in terms of Lagrange’s multiplier 
(or regularization parameter) l, and is given as. 

 (7)
Once an optimally smoothed function is obtained the 
robust derivative can be estimated readily. Note that 
the function which satisfies equation (7) is nothing 
but a smoothing spline. However, Hanke and Scherzer 
(2001) demonstrate that as long as the sampling interval 

, where f(2) denotes the second order derivative 
of a smooth and continuously differentiable function, the 
error bound obtained by a finite difference method and that 
of the method of the smoothing spline is same. In addition, 
they also demonstrate that the smoothing functional, thus 
obtained, satisfying the constraint equation, is actually a 
natural cubic spline over the grid of sampling points. 

PROPOseD MethOD

In the light of the aforementioned discussion in the earlier 
section we propose in the following a simple methodology 
for robust estimation of the first order derivative, given a 
set of discrete measurements. Instead of providing a garb 
of mathematical treatment we give a sequential algorithmic 
pattern (or a work flow). 

Work flow

Get the evenly spaced measured data in a grid D with 
a known sampling interval h. 

Get an a priori estimate of the noise level d in the 
measured data. 

Piecewise interpolate the measured data using a spline 
interpolator. 

Get the interpolated value at the grid points xJ  
separated with a grid interval h*=c√d, where (0,1]c∈ . The 
suffix j is used to denote the node corresponding to the 
new ‘coarse’ difference grid.

Piecewise interpolate the interpolated values 
corresponding to the new grid points xJ to the original 
data grid points. 

Compute derivative using a difference schemes (I and 
II for end points) and III (for all other points). 

Natural spline interpolation 

A spline interpolator is actually the major tool of the 
proposed algorithm in estimating derivative via difference 

scheme for noisy data. Note that smoothness or regularity 
is the ultimate attribute of a continuous function to 
control the wild oscillations what we, generally, observe in 
estimating derivative of a noisy data. A spline interpolator, 
which is essentially a piecewise polynomial function 
demonstrates both the local and the global properties. 
Locally such a function satisfies every data points while 
globally, it maintains the regularity condition. A natural 
cubic spline which possesses the property of continuous 
second order derivative is widely used spline interpolator 
and is readily available as a software tool or subroutine 
function in publicly available open access software, such 
as Python, Octave, Julia or as a Fortran and C libraries. 

Noise estimation

An a priori knowledge of the noise level in the noise 
contaminated data is an essential element of the proposed 
algorithm. Having an a priori knowledge of the noise level 
in data, in many occasions, especially in earth sciences, is 
a non-trivial task. This is because, in many occasions, one 
is forced to have a single set of measurements and hence 
statistical methods, as available, in the standard text book 
on statistics, are not applicable in estimating the noise 
variance in data. For the sake of ease, let us assume that 
the contaminated noise in data is random and stationary 
in nature, which means that the noise variance remains 
fixed for the entire data set. Such assumption, by and 
large, acceptable in general, although the author agrees 
that a comprehensive knowledge of noise characteristics 
requires more elaborate studies. We propose a simple 
approach in estimating the noise level in a single set of 
measured data, although such approach does not guarantee 
providing a precise estimate of the noise level. Presence of 
random noise causes wiggles in otherwise smooth curve. 
The smoothest part of a curve is the portion of the curve 
attaining saturation or becoming flat. In the portion of flat 
or low slope region the signal-to-noise ratio (SNR) will be 
very small causing the noise component more prominent. 
This is the major rationale behind choosing such portion 
of the curve. The estimated noise variance corresponding to 
the homogeneous (or nearly homogeneous) regions would 
lead to estimate the noise level in the data. Following two 
strategies are proposed:

strategy I:

Plot the measured data in X-Y frame and identify the flat 
or nearly flat portion(s) where the plotted curve would 
attain saturations. One may use any generic spreadsheet 
(including open access) software to plot and select a portion 
of data which corresponds to a nearly flat (or low slope) 
part of the curve. 

If the selected portion of the data is suspected to be 
reasonably flat then the mean of the selected data would 
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approximately approaches the true value. If the selected 
data are normalized and the noise, as perceived, is random 
in nature then the estimated mean would approach the 
zero value. The estimated variance would then suggest the 
noise level in data. 

If several flat regions in the plotted data are identified 
then the aforementioned procedure should be continued 
separately and the average of all estimated noise variance 
is considered as the best estimated noise variance.    

strategy II: 

If flat or nearly flat region of the plotted data is not 
identified then choose the portion of the data which seems 
to be monotonic and corresponds to have mild to moderate 
slope.  Note that the number of data points of the selected 
region should be at least more than 7 in order to get a 
reasonable accuracy in the estimation.

Choose a median window of size 3 or 5 and do 
median filtering by sliding the window every data point 
and replacing it with the median value. The choice of 
window size is somewhat ad-hoc, but the guiding principle 
in selecting an appropriate window size should depend on 
the noise level in data. The small widow-size works well 
for data with a low noise level. If the noise level in data 
is high, a bigger window may be required. For 1D data 
with the geophysical anomaly the size of the window of a 
median filter between 3 and 5 is sufficient. The median 
filter is a sliding window technique where the center of 
the window should correspond to the data point. The 
rationale in considering median filter is that it is robust 
in handling occasional large excursion of data within the 
selected patch effectively. 

We, however, suggest using iterated median filtering 
on the selected portion of the data set. The pseudo-codes 
are given below: 

Algorithm on iterated median filtering 
 Set: dold = dd  
 Compute: dnew = medianfilter (dold)
 Do until: , a threshold value ϵ ~10-3

 Set: dold = dnew 
 Compute: dnew = medianfilter (dold)
 End Do
 Estimate: d~

2

new
L

−d ddd~ dd–dnew
2

new
L

−d ddd~
L2.

NUMeRIcAl tests

synthetic data

We conducted numerical experiment to validate the 
proposed technique of robust estimation of derivative of 
noisy set of data. For that, we considered synthetically 
generated data using bell-shaped function. The evenly 
spaced data ranging within the interval [0,1] are the discrete 

values of bell-shaped function contaminated with random 
noise with standard deviation 0.02 are presented in Figure 
1. The sampling interval of the digitized data is 0.02. We 
first attempted to estimate the noise level d in data in order 
to validate the noise estimation algorithm. The value of the 
estimated noise level using the Strategy-I for selected data at 
the left flank of the curve (Figure 3) turns out to be 0.0171, 
a slight underestimation. The value of the estimated noise 
level using the Strategy-II on the selected data at the right 
flank of the curve is 0.0295, a slight overestimation. The 
average estimated noise level turns out to be 0.0233. The 
noisy data are piecewise interpolated using natural cubic 
spline interpolator. We then selected the grid interval  
h*(=c√d) as 0.1202 which corresponds to a set of new 
spline knots (as presented by large bullets in Figure 3). 
The knot values are computed using the spline parameters 
which are already estimated during piecewise interpolation. 
We then spline fit the estimated data corresponding to the 
coarse grid interval *h

 
and get the interpolated data values 

at the original sampling interval. This gives a smooth 
estimate of the noisy data. The interpolated curve (solid 
line) is shown in Figure 3.  

To estimate the first order derivative we then used 
the finite difference schemes, I, II (for the end points) 
and III (for all other points) corresponding to the original 
sampling grid. The estimated first order derivative using 
the proposed algorithm and the synthetic response of the 
first order derivative are shown in Figure 4. 

The estimated mean squared error is given as 0.03267, 
which suggests a sufficiently robust estimation of the first 
order derivative of data contaminated with random noise.  

Validation of the method: an example of ocean 
temperature profile from Gulf of Mexico 

The variation of temperature within a column of ocean 
water plays significant roles in climate research, meteorology 
and ocean circulation both locally and globally (Helland-
Hansen, 1930; Munk, 1966; Stewart, 2008; Williams et 
al., 2010; Hieronymous et al., 2014). The robust estimate 
of vertical gradient of temperature depth profile is a key 
in understanding the movement of water parcel (Stewart, 
2008), analyzing the variability of meridional gradient with 
depth (Roden, 1979), and in making an account of change 
in temperature due to vertical movement of density surface 
(Bindoff and McDougall, 1994, Yaremchuk et al., 2001). 

We implement the proposed algorithm in estimating 
the temperature gradient from measured temperature 
versus depth profile. We chose temperature profile data of 
a water column at the northern Gulf of Mexico, which is 
publicly available by US National Ocean and Atmospheric 
Administration (NOAA). Forrest et al. (2005) compiled 
and processed 70,000 measurements of mean annual 
temperature versus depth from 3495 profiles taking an 



Indrajit G. Roy

376

beyond the depth of 1200 meter of the water column such 
decrease slows down and the curve almost reaches to a flat 
homogeneous region. We considered a small data sample 
from the homogeneous region and used the Strategy-I 
in estimating the noise level in the data. The estimated 
value of the noise level in data turns out to be 0.0283. 
We also used Strategy-II in the noise estimation as well. 
The estimated value of the noise level using Strategy-II is 

average from near to ocean surface up to the depth of 5000 
feet with a depth interval of 100 ft. We redraw the Figure 
3 of Forrest et al., (2005) and digitized it. The original 
temperature versus depth data are in the units of degree 
Fahrenheit and foot. We first converted the data into degree 
Celsius and meter. 

The water temperature versus depth profile clearly 
suggests monotonous decrease in temperature. However, 

Figure 4. Plot of the estimated first order derivative using the proposed algorithm (solid line) and the synthetic response of the 
first order derivative (broken line). 

Figure 3. Plot of evenly spaced noisy data values (small bullet), interpolated values correspond to coarse grid (large bullet) and 
final interpolated curve (solid line).
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0.0274. The average of these two values is 0.02785. The 
first order derivative which is the temperature gradient ( )z T∂  
with depth estimated by the proposed scheme (solid line) 
and the one estimated using the standard procedure (the 
finite difference scheme as mentioned in the paper) on the 
original noisy data (broken line) are presented in Figure 6. 

Note that even when the discrete data set contains a 
moderate level of noise the conventional difference scheme 
in estimating the first order derivative lacks in robustness. 
On the other hand, the proposed technique demonstrates 
sufficient robustness in estimating the first order derivative 
of a set of evenly spaced noisy measurements.  The 
temperature gradient steadily increases up to a depth of 
650 m and attains a plateau there after. 

cONclUsIONs

The estimation of the first order derivative of a set of 
measurements is an important exercise to be carried 
out almost routinely in every field of science including 
geosciences. A simple technique for robust estimation 
of derivative of noisy evenly spaced measured data is 
proposed. The proposed technique which is based on the 
conventional first order finite difference scheme and cubic 
spline interpolation technique, demonstrates sufficient 
robustness in estimating the first order derivative of random 
noise contaminated synthetic data. A simple strategy 
(with a workflow) of making an approximate estimate of 
the noise level in data is discussed. The applicability of 

Figure 5. Temperature versus depth profile of a water column form the northern Gulf of Mexico, U.S.A.

Figure 6. Estimated temperature gradient versus depth plot using the proposed (solid line) and the finite difference (gray broken 
line) scheme on the original data.



Indrajit G. Roy

378

the method in estimating the temperature gradient, using 
temperature versus depth profile data from the northern 
Gulf of Mexico, is also demonstrated. Most importantly, the 
proposed technique is so simple that a limited knowledge 
on numerical methods and an access to the public domain 
software, such as Python, Octave and Julia is suffice to 
implement it without much difficulty. 
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