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Abstract
Complex noises that arise due to the nonlinear interaction of unwanted seismic signals (coherent and random 
noises), alter the primary reflections and create severe problems than the simple random noise in recognizing 
geological structures from seismic stack sections. We present here Time Slice Singular Spectrum Analysis 
(TSSSA) for the suppression of such noises from seismic records in time domain. The TSSSA involves 
organizing the spatial data (corrected for NMO) which corresponds to constant time into trajectory matrix 
for the reduction of noises that do not show large spatial coherency. The singular value decomposition based 
rank reduction of the trajectory matrix formulated from constant time slice helps to identify the noise in 
TSSSA with low Eigen values. We test the method on synthetic data contaminated with complex noises to 
demonstrate its  ‘robustness’ for the identification of faults and then apply to high-resolution seismic reflection 
observations from Singareni coalfield, India. We find a good correlation between de-noised and pure synthetic 
data, which indicates the suppression of complex noise without any loss of seismic features. The application of 
TSSSA to pre and post stack seismic field data suggests significant improvement in signal to noise ratio. The 
reflections resembling the coal beds in the pre and post stack TSSSA processed depth sections clearly match 
with the reflectors in the synthetic trace generated from well log data.  Finally, improvement in SNR and clear 
matching of fault structures and coal beds identified in the TSSSA processed data with regional fault structures 
and available geological information suggest the TSSSA as a robust method for seismic data conditioning.

Keywords: Complex noise suppression, Rank reduction, Singular Spectrum Analysis (SSA), Seismic reflection 
data, Singareni coalfield.

INTRODUCTION

High-resolution seismic records are useful for locating the 
geological structures like faults, folds, caved pillars, mined-
out areas,  and coal seam etc (Greenhalgh et al., 1986; 
Tselentis and Paraskevopoulos, 2002). However, seismic 
reflection data from the coal field suffer from interference 
of seismic waves that produce composite reflection pattern 
(Lawrence, 1991, 1992). Regardless of constructive or 
destructive interference, the primary reflections from 
the coal bed of interest undergo significant alterations. 
Consequently, the interference of seismic waves reflected 
from different coal beds lead to the complex reflection 
patterns, which deter the identification of individual beds 
(Lawrence, 1991, 1992). For example, interference of 
seismic waves with the same phase may produce pseudo 
high amplitudes in the recorded data.  In addition to the 
complex reflection pattern, diffraction of seismic waves 
at sharp discontinuities also produces pseudo reflection 
amplitudes. The presence of such pseudo amplitudes 
due to the combined effect of aforementioned processes 
significantly alters the primary reflection amplitudes. 
Furthermore, there are always certain amounts of other 
(random and coherent) noises present in the seismic 
records. Thus, the seismic data obtained from the field 

represent the amalgamated response of earth’s layered 
structure and complex noise.

The complex noise, for brevity, we refer here as a 
combination of various noises e.g. random, coherent, and 
erratic etc., which might have arisen from the human 
activities, source footprints, structural discontinuities or 
sharp geological boundaries etc. Unlike the random noise, 
which produces the “flat spectrum” in frequency domain, 
it is often difficult to predict complex noise easily due 
to their deceptive nature. Hence, it is imperative to look 
for alternate robust schemes to recognize the reflector 
patterns and discontinuities more precisely in the seismic 
records. The accurate processing and interpretation of field 
seismic data require only primary reflections. Researchers 
have employed several techniques involving the domain 
conversions to suppress the random and coherent noises 
and to recover the missing amplitudes from the seismic 
data acquired at regular and irregular intervals.

Ulrych (1988) and Trickett (2003) have presented 
Eigen Image processing approaches in time and frequency 
domains respectively for noises suppression and missing 
data reconstruction. The singular spectrum of the data 
helps to identify the noise in Eigen Image processing 
as the additive noise and data gaps increase the rank of 
the matrix. De-noised signal reconstruction from Eigen 
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triplets (row and column eigenvectors and Eigen value) 
with high variance is a kind of rank reduction procedure 
in the above methods. Another singular spectrum based 
efficient algorithm, which utilizes the data trajectory 
matrices for separating signal and noise is the Singular 
Spectrum Analysis (SSA) (Broomhead and King, 1986a, 
1986b; Fraedrich, 1986; Golyandina and Zhigljavsky, 
2013; Rekapalli and Tiwari., 2015). The SSA designed for 
the analysis of non-linear geophysical data, successfully 
removes the noise along with simultaneous reconstruction 
of missing or scattered signal amplitudes (Vautard et al., 
1992; Ghil et al., 2002). The decomposition of the data 
using data-adaptive basis functions in SSA helps accurate 
reconstruction of signal compared to the methods which 
are using fixed basis functions. Recently, Sacchi (2009) and 
Oropeza and Sacchi (2011) have developed and employed 
SSA based FXSSA and Multichannel SSA for simultaneous 
de-noising and data gap filling of seismic signals in 
frequency domain. However, these methods have been 
applied to data in frequency domain. The domain (time 
domain to frequency domain) conversion of non-stationary 
seismic data with discontinuities and abrupt changes 
generates artifacts. The SSA and MSSA of the frequency 
domain data further enhance the artifacts in the processed 
output (Rekapalli et al., 2014; Rekapalli and Tiwari, 2016). 
It is difficult to provide physical interpretation of seismic 
data assorted with such artifacts, especially for recognizing 
thin coal beds and their discontinuities. Therefore, we 
present here Time Slice Singular Spectrum Analysis 
(TSSSA) in time domain, to suppress the complex noise 
from seismic reflection data. The signal decomposition and 
reconstruction in the TSSSA is based on SSA and involves 
the data adaptive basis functions of the spatial seismic data 
(i.e., the data of all channels correspond to a fixed time).

We illustrate the methodology of TSSSA for complex 
noise suppression and also for scattered amplitude 
reconstruction of seismic reflection data. First we provide 
testing of the method on synthetic data assorted with 
complex noise and then its application to pre and post stack 
seismic datasets from Singareni coalfield, Telangana, India 
to indentify the fault structures and coal beds. Finally, we 
verify the validity of identified faults and coal beds using 
available geology of the study region and well data. 

METHODOLOGY

Although there are wide varieties of frequency domain 
techniques for data de-noising and missing amplitude 
recovery, the data adaptive decomposition in SSA based 
time domain techniques are robust for accurate signal 
recovery. We apply the SSA to spatial series (i.e., data of 
all channels) corresponding to fixed time. The crustal 
layers show high lateral quasi-homogeneity on regional 
scales compared to chaotic variations in depth direction. 

Since the correlation among the primary amplitudes from 
a constant time/depth slice is always stronger than the 
noise correlation, it is possible to extract the correlated 
lateral signal to distinguish the primary signals from 
complex noise background. In this way, the analyses of 
seismic data of all channels at a fixed time as spatial series, 
allow us to suppress the noise in the TSSSA method. The 
reconstruction in this method is also a singular or Eigen 
spectrum based rank reduction (Trickett, 2003; Tiwari and 
Rajesh, 2014). Hence, we can use the Eigen spectra to 
identify the signal with significant Eigen values and noise 
with relatively low Eigen values. Using basic mathematical 
description of SSA (Golyandina et al., 2013), the TSSSA 
methodology is explained as follows:

Embedding the trajectory matrix: The TSSSA processing 
begins with embedding the trajectory matrix from the 
spatial data series represented by Y(x) ={y(x1), y(x2)…y 
(xN)} using a window length L (2>L<=N/2).Here N is 
number of traces in the data and K (=N-L+1) represents 
the number of lagged vectors of Y(x) that form the trajectory 
matrix (T) of size L× K. 
	 T L×K= [X1:..…: Xi : …. : XK]	 (1)
Where Xi represents a vector of length L given by Xi= 
{y(xi), y(xi+1),…, y(x i+L-1)} and xi (for i=1 to N) represent 
the spatial position of geophones/ receivers.

Singular Value Decomposition of trajectory matrix: In 
the second step, the trajectory matrix was decomposed 
into eigenvector(Left and Right) and a diagonal eigen value 
matrix using Singular Value Decomposition (SVD).The 
decomposition of T given by

	
(2)

Where, λi is the ith eigenvalue corresponding to the 
ith eigenvector Ui of TTT and d is the no of nonzero 
eigenvalues. The triple denoted by (√λi, Ui, Vi) is called 
the ith Eigen triple. As discussed above, the seismic data 
is a combination of amplitudes from different processes 
(reflection, interference, diffraction etc.). The SVD allows 
us to estimate the signal amplitudes of different Eigen 
processes using respective Eigen value. Thus it is possible 
to identify the Eigen processes of noise with low eigenvalues 
and randomly fluctuating eigenvectors. 

Eigen triplet grouping and reconstruction of trajectory 
matrix: In the next step, the Eigen triplets with significant 
variance and periodicity are grouped to reconstruct the 
trajectory matrix using the following equation

	

(3)
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Here G represents the group of Eigen triples satisfying 
the criteria of variance and eigenvector periodicity. The 
Eigenvector periodicity is useful to eliminate the very low 
frequency carrier and high frequency noise components. 

Diagonal averaging of reconstructed trajectory matrix: 
Finally, we average the reconstructed trajectory matrix (Tr) 
along its anti-diagonals to obtain de-noised data series. Let 
us denote the reconstructed series by Xrc={g1, g2 …gk ……..
gN}. The averaging procedure can be written as follows

 	
(4a)

	
(4b)

	
(4c)

The TSSSA pseudo code used for the seismic data de-
noising is shown below. 

Window length and Triplet group selection

The window length selection is crucial in the singular 
spectrum analysis (Patterson et al, 2011; Hassani et 
al, 2011). Accordingly, the window length equal to the 
classical limit N/2 would resolve the principal components 
completely. But, for large data sets, the decomposition of 
signal at window length N/2 is computationally expansive 
and more over the number of signal component present in 
the data would be much smaller than N/2. In such cases, 
it is appropriate to choose an optimal window length much 
smaller than N/2 that serve to resolve the independent 
signals from different processes. Based on theoretical 
verification, Hassani et al, (2011) have suggested that 
median of (1…..N) would be an appropriate choice of L 
for most of the real world data. However, the selection of 
appropriate window length should be made on the apriori 
knowledge of the curvature of the reflectors in the TSSSA, 

such that the primary reflections must be linear within a 
window. Hence, one should be careful while dealing the 
seismic data with curved events/ reflectors, which would 
require smaller window lengths than usually adopted in 
other analyses. It would be appropriate to applying the 
TSSSA method to normal move out (NMO) corrected 
data to circumvent hyperbolic curvature of the reflections 
to avoid conflicts arising in the window length selection.

The second important parameter needed to be 
discussed here is the appropriate selection Eigen triple 
group for de-noised signal reconstruction. The improper 
grouping would generate artifacts in the reconstructed 
data. There are several recent approaches (Hassani et al, 
2012) for estimating the separation between individual 
Eigen components. In general, de-noising scheme adopts 
the variance/ eigenvalue based grouping (Trickett, 2003; 
Golyandina et al., 2013; Rekapalli and Tiwari, 2015). 
The paired Eigen triplets with nearly same Eigen value 
share the same physical process. Hence in dealing such 
paired Eigen triplets, either both the triplets are to be 
considered for reconstruction or both should be dropped 
to avoid the artifact generation. Following the above 
procedure, we have grouped the Eigen triples on the basis 
of variance of eigenvalue and periodicity of the eigenvectors, 
which is appropriate for the objectives of de-noising and 
reconstruction.

ANALYSIS AND RESULTS

Testing the TSSSA on synthetic data of fault 
model with Complex noise

Initially, we test the efficacy of TSSSA on synthetic data. 
The synthetic reflection data (Figure 1a) of a normal fault 
model was generated using the finite difference method. 
The complex noise is generated using the following 
equation

	 	 (5)
 Here m can take the values between 0 and 4. We have 
selected m=3.9 and a1=0.1 to generate the synthetic noise. 
Diffracted and scattered energies are assumed to give rise 
to chaotic/ complex noise in the composite seismic signal. 
The effect of such complex noise is more severe at far offset. 
We use mixture of the noise generated using the equation 
5 and random noise to contaminate the data.  

We applied the TSSSA algorithm at various complex 
noise levels ranging from 10% to 40%. In each of the 
cases, 10% random noise was added as the background to 
simulate more realistic field situation. The noisy synthetic 
data with 20% noise (10% random +10% complex noise) 
and its de-noised output reconstructed using TSSSA are 
respectively shown in Figure 1b and Figure 1c. The results 
suggest that the signal reconstruction is fairly good and the 
scattered energy has been recovered in TSSSA output even 
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in the presence of diffraction energy. We have successfully 
removed the diffraction energy in addition to the added 
noise from the synthetic data. The synthetic data with 30% 
noise (10% random +20% complex noise) and 50% noise 
(10% random + 40% complex noises) and their TSSSA 
de-noised outputs are shown in Figure 1d to Figure 1g. 
The synthetic example demonstrates that the TSSSA is 
efficient up to 30% complex noise level (Figure 1e). Above 
this threshold, the method fails to suppress the noise. The 
noise in the TSSSA de-noise output shown in Figure 1g is 
an example that demonstrated the effect of above stated 
noise threshold.  

Application to the field data

The study area Singareni coalfields (Telangana, India) as 
shown in Figure 2, is located near Ramagundam, in the 
Pranhita-Godavari (PG) Gondwana graben that formed in 
between the boundaries of Bastar and Dharwar cratons 
(Murthy and Rao, 1994). The Lower Gondwana rock 
formations in this region are affected by a complex system 
of faulting, which lead to the general eastern tilting, 
followed by erosion. The Overall strike is ~ NNW-SSE 
with ENE and WSW dipping. The NW-SE faults parallel to 
the PG basin boundary faults and NE-SW oriented faults 

Figure 1. (a) Synthetic data of normal fault model with diffraction energy (b) Synthetic data contaminated with 20% complex 
noise (10% random +10% chaotic) (c)TSSSA output of Synthetic data shown in Figure 1b (d) Synthetic data contaminated with 
30% complex noise (10% random +20% chaotic)  (e) TSSSA output of Synthetic data shown in Figure 1d (f) Synthetic data 
contaminated with 50% complex noise (10% random noise +40% chaotic noise) (g)TSSSA output of Synthetic data shown in 
Figure 1f.
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are the two kinds of geologically probable faults which 
are  could be observed in the study region. These faults 
are largely dip-slip faults (normal-sense) and appear to cut 
across all the Lower Gondwana formations, although there 
is a minor left-lateral strike-slip component (Murthy and 
Rao, 1994). According to the researchers, the fault systems 
observed are related to the Permian or Mesozoic fault 
systems (Biswas, 2003). The borehole litho-logs (<500 m 
deep) in the study area reveal that the coal seams are found 
in the lower segments of the boreholes, and are associated 
with carbonaceous shale, clay and sandstones in the depth 
range of ~200 to 500m. There are 7 coal seams, of which 
4 are prominent with thickness varying in range 1 m to 
~ 10 m. The above rock formations have been deformed, 
giving rise to dipping sedimentary bedding surfaces. The 
overall strike is ~ NNW-SSE and dips gently towards ENE. 
The amount of dipping varies from 6º to 9º. Borehole 
litho-logs also suggest the existence of two sets of wrench 
NW-SE to NNW-SSE and NNE-SSW oriented faulting in 
the study area. It appears that the fault interactions lead to 
the formation of complex graben and/or rifts in the study 
area. The vertical displacement of the faults in this region 
is nearly less than or equal to 5m. It is interesting to note 
that these small faults have kinematics history similar to 
the large-scale faults of the PG basin.

The high resolution seismic reflection data used 
in the present study was acquired from the study area 

shown in Figure 2 using 0.25mS sampling interval along 
the profile shown in Figure 2b. The 60 channels Geode 
system manufactured by geometrics was used in the data 
acquisition. Emulsion based explosive was used to generate 
high frequency energy to incorporate high resolution data. 
The common midpoint technique with end on shooting 
geometry, was used for data acquisition with 15m average 
shot depth and 5m geophone interval. The near and far 
offsets are chosen as 120 m and 415 m respectively and 
the recoding geometry ensures a nominal CMP fold of 
15. After preliminary processing (e.g. reversal correction, 
muting, surgical mute etc.), the data was converted into 
CMP gather and velocity analysis was performed for NMO 
correction. The NMO corrected CMP gathers converted 
to shot gathers. We have applied the TSSSA to the NMO 
corrected field data for suppression of complex noise and 
scattered amplitude recovery. 

Figure 3 depict the shot gathers before (top panel) 
and after (bottom panel) the application of TSSSA. Here, 
spatial data series corresponds to 60 channels in each shot 
gather which was processed using TSSSA with window 
length 21. The data of total 100 shots was processed. 
The reflection amplitudes in the raw data as shown in the 
top panel of Figure 3 are scattered due to the presence of 
complex noise. Thus it looks somewhat fuzzy to identify 
the primary reflections and their continuity from raw data. 
The TSSSA output reconstructed from the first 10 Eigen 
triplets is shown in the bottom panel of Figure 3. It can be 

Figure 2. a) Geological map of the study area along with b) Location of the seismic profile. 
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Figure 3.  NMO corrected shot gather data before (top panel) and after (bottom panel) the application of TSSSA. 

Figure 4. Spectral content of signal and noise portions compted for NMO correlcted gathers before (Left panel) and after (Right 
panel) the application TSSSA.  Red color line indicate the component of fundamental mode, green color is the Noise and brown 
denotes the signal portion excluding DC and harmonic component. 
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observed that there is significant improvement in signal to 
noise ratio of the data after the TSSSA processing. Figure 
4 shows the signal and noise spectral content present in 
the original NMO corrected data and its TSSSA processed 
output. One can notice that the SNR has increased 
from 3.10dB to 10.09dB in the TSSSA processing. The 
underlying method also facilitated the recovery of scattered 
reflection amplitudes for the clear identification of primary 
reflector patterns. Comparison of shot gathers before 
and after the TSSSA processing and respective signal to 
noise ratio demonstrate the robustness of the proposed 
method for noise suppression and signal reconstruction. 
We applied the deconvolution on TSSSA filtered data to 

sharpen the wavelet then band pass filtering to limit the 
frequency content of the data between 30 to 140 Hz. The 
shot gather data was converted into CMP gathers. Then 
preformed second pass velocity analysis on NMO removed 
CMP gathers to get best stacking velocity. The data was 
stacked to produce final stack section using best aligned 
NMO corrected CMP gathers. 

Figure 5a and 5b respectively show the depth converted 
stack section of length 1010 m obtained from original 
(without TSSSA processing) and TSSSA processed shot 
gathers as explained above. The noise was significantly 
suppressed in the TSSSA processed data (Figure 5b) and 
the pseudo amplitudes in the stack section of original data 

Figure 5. a) Stack section without TSSSA application (using convetional processing). (b) Stack section obtained from TSSSA 
processed shot gather data from singareni coal basin. (c) Bore hole litholog from the study region.

Figure 6. TSSSA output of stacked data shown in Figure 5b. (a) Reconstructed using window length 230. (b) Reconstructed using 
window length 30 along with Well tie (in rectangular box). (c) Zomed display of well tie.  
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(Figure 5a) are also appropriately corrected in the TSSSA 
processed stack section (Figure 5b). The reflections below the 
depth 300m were smeared due to the non-linear interaction 
of scattered and diffracted signals from faults in the original 
stack data shown in Figure 5a. Whereas, such reflections are 
recovered for clear visualization in the TSSSA processing, 
as can be seen in Figure 5b. Although it is well known that 
the stacking procedure removes the effect of random noise, 
there are still certain amounts of deceptive complex colored 
noises in the data, possibly arising due to the various other 
sources as discussed earlier. Hence, we applied the TSSSA 
de-noising on post stack data shown in Figure 5b to alleviate 
the complex colored noises. The TSSSA output of the stack 
section data (Figure 5b) corresponding to the window lengths 
230 and 30 are respectively shown in Figures 6a and Figure 
6b. The TSSSA suppressed the low frequency (complex and 
colored) noise in the output at window length 30 (Figure 6b) 
comparative to the output at window length 230. There are 
strong reflections between the depth range of 200 m to 450 
m in the TSSSA processed stack section corresponding to 
coal beds (Figure 6b), which agrees well with the available 
geological data in the study area (Murthy and Rao, 1994; 
Biswas, 2003).

To validate the field data, we use synthetic seismic 
traces generated from the borehole information within 
the study region that lies approximately around 200m 
distance perpendicular to the seismic line. The observed 
reflections from the stack section substantiated well with 
the synthetic data shown in Figure 6c. The geological 
information (Murthy and Rao, 1994; Biswas, 2003) of the 
study region also corroborate well with the minor as well as 
major faults as mapped on the post stack TSSSA processed 
section. Also the reflections observed in the stack section 
match well with the geologically inferred coal seam in the 
study area. A disturbance in the amplitude and continuity 
of seismic reflectors (inferences for faulting) is also observed 
at two places in the stack section. These disturbances are 
noticed as the signatures of a normal faulting detected at 
a distance of ~150 m from the WSW end and another 
fault at a distance of ~720 m from WSW direction. These 
faults locations are with geologically known faults. Our 
results show the presence of near normal faults with low 
vertical displacement in the stack section. In addition, few 
minor normal and near vertical faults present in the stack 
section are intrinsic to coal basin. The faults in the seismic 
sections show NE-SW direction across the half PG graben 
structure in the study area.

CONCLUSION

We have developed a robust Eigen analysis based Time 
Slice Singular Spectrum Analysis for time domain 
seismic reflection data de-noising. The method was 
tested on noisy synthetic seismic reflection data for its 

efficacy and then applied to the field data for complex 
noise suppression. Experiments on noisy synthetic data 
generated over the normal fault model with diffraction 
energy suggest that the underlying method is robust to 
suppress complex noise up to 30%. The application of the 
method to high resolution seismic reflection shot gather 
data from Singareni coal fields reveals that the method 
has significantly improved the signal to noise ratio paving 
the way to recognize geological structures more accurately. 
Finally, the applicability of the method for coherent noise 
suppression is demonstrated on post stack data. The 
results from post stack TSSSA application suggest that the 
underlying algorithm successfully suppressed the complex 
colored noise. The fault structures and coal beds mapped 
on the de-noised stack section correlated well with the 
geological information. High correlation (>75%) between 
the synthetic trace computed from the log data and the 
TSSSA processed stack section suggests the robustness of 
the method. Hence, we conclude that the TSSSA method 
is robust for complex noise suppression from seismic 
reflection data for the identification of geological structures. 
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