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ABSTRACT
In seismic modelling experiments, the propagating seismic wave experiences attenuation when real media 
is simulated. However, for computational ease, we often ignore this effect and model the Earth as either an 
acoustic or an elastic medium. In this paper, we briefly discuss the importance of considering attenuation 
in seismic modelling, by using a viscoelastic wave equation. Further we also briefly discuss the effects of 
attenuation on seismic data and its incorporation in seismic modelling. We find that the attenuation has 
a large effect on synthetic seismogram, which should be properly addressed in advanced seismic processing 
and imaging methods.

INTRODUCTION

Attenuation is a property of a medium due to which the 
energy of a seismic wave can be dissipated in the form of 
heat and thus leading to a reduction in the wave amplitude. 
Factors and phenomena responsible for the attenuation 
can be broadly classified as either extrinsic, or intrinsic.  
In extrinsic attenuation, redistribution of energy leads to a 
reduction of amplitudes, while in intrinsic attenuation, the 
waves suffer energy loss due to conversion of mechanical 
energy into heat. Commonly observed wave phenomena 
like geometric spreading, scattering, leaky modes, etc. can 
be cited as examples of extrinsic attenuation and they do 
not contribute towards intrinsic attenuation. In general, 
seismic attenuation is quantified in terms of quality factor 
(Q), which can be defined as a ratio of stored energy to 
dispersed energy, as it measures relative energy loss per 
oscillation cycle of the seismic waves. In ideal scenario, Q  
is related to the physical state of the rock and it increases 
with increase in density and velocity. 

Since attenuation results in a loss of seismic energy, 
the recorded seismic traces are required to be compensated 
for an exact of amount of Q. To achieve this, determination 
of a precise Q model is required, especially in the high 
attenuating regions like Deccan Volcanic Province (DVP), 
where thick basalt sequences cause high attenuation 
to the propagating seismic waves (Vedanti et al., 2015, 
2018). In these areas, data processing using conventional 
methods may fail because of low signal to noise ratio, 
especially in the sub-basalt formations. In a synthetic 
study carried out by Malkoti et al., (2015), it is shown 
that due to attenuation, amplitudes of the late arrivals or 
amplitudes from deeper reflectors, are highly diminished 
in the generated seismogram, which makes processing 
and interpretation very challenging in sub-basalt layers. In 
recent past, attempts have been made to apply advanced 
techniques like full waveform inversion (FWI) to improve 

the seismic imaging. This technique needs ‘complete wave 
field information’ with precise amplitudes to obtain the 
accurate gradients and thus, it needs a Q structure of the 
domain. There are several techniques mentioned in the 
literature for estimation of Q from the acquired seismic 
data. Most of these techniques are based upon certain data 
attributes, such as spectral ratio technique which depends 
mainly on the amplitude, however, the seismic attenuation 
has a high influence on several other attributes known 
as the first order effect. Hence, considering the medium 
as an attenuating media, has its own consequences on 
Q estimation techniques and it is quite likely to obtain 
different values of Q from the same data using different 
methods (Tonn, 1991). To understand this problem of the 
estimation of Q, we first need to understand the theory 
of viscoelasticity and the aspects we should consider 
while incorporating attenuation in a seismic modelling 
experiment. Thus in this paper, we briefly discuss these 
aspects of incorporating attenuation in seismic modelling 
and demonstrate its need by using a simple Earth model. 

VISCOELASTIC MODELS

Viscoelasticity is a property of a medium that exhibits 
both viscous and elastic characteristics when it undergoes 
deformation. In a pure elastic medium, the process of 
‘application and removal of the load’ follows energy 
conservation; however, in a viscoelastic material, it involves 
energy loss. The energy is dissipated during the loading and 
unloading cycle and thus obtained hysteresis curve area can 
be used to estimate the attenuation or the quality factor Q. 
There are several approaches available in literature to model 
the quality factor, which includes simple damping, frictional 
models, complex moduli, time dependent moduli etc. 
(Carcione, 2007; Kjartansson, 1979; Liu et al., 1976; Tal-
Ezer et al., 1990). However, in this paper, we preferred to 
follow more reasonable ‘time dependent moduli’ approach 
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for which it is required to define the basic characteristics 
of a viscous material. 

Ideal viscoelastic material exhibits the characteristics 
functions (creep and stress-relaxation functions) as 
shown in Figure 1. These characteristic functions are 
obtained under the two kinds of tests, where the first 
test is, “Creep Recovery Test”, and the second is “Stress 
Relaxation Test”. In case of the former, a constant stress 
is applied on the sample for a fixed duration of time and 
created stress changes are observed over the body. In the 
latter test, a constant strain/deformation is applied on  
the body and then the stress variation with time is 
observed.

Different mechanical models can be defined to 
describe such a viscoelastic material. In these models, 
number of parameters may vary from 1 to N depending 
upon different configurations, which can be used to 
approximate the rheology of the material by satisfying 
the above defined tests functions. While doing so, we try 
to mimic the attenuation by using minimum number of 
elements to incorporate the correct amount of attenuation, 
while preserving the characteristics. Thus, we start with 
a simplest family of models i.e., the 1-element/parameter 
family that includes single springs or dash pots. In a pure 
elastic medium, there is no dissipation of energy, so it can 
be represented with a spring.  However, a viscous material 
can lose the energy and hence it is modeled as a dashpot, 
which acts like a damper.  Stress-strain relation for these 
two can be written as

 

 
For spring,                        σ = kϵ

For  Dashpot,                   σ = η
dϵ
dt

 

  To represent the Earth more accurately, these two 
models shall be used in different combinations to form 
models with higher number of parameters. 1 spring and 1 
dashpot model, is called as 2 parameters family. The spring 
and dashpot components can be arranged either in parallel or 
in series which are called as Kelvin-Voigt model and Maxwell 
model, respectively. These arrangements should properly 
model the characteristics shown in Figure 1. However, the 
Kelvin-Voigt model cannot model either creep function or 
stress-relaxation function correctly, which is a disadvantage 
while Maxwell model only has acceptable stress relaxation 
function. This limitation led to the inclusion of higher 
number of parameters such as 3-parameter model e.g., Zener 
model (Figure 2), also known as Standard Linear Solid (SLS) 
model, and 4-parameters model e.g., Burger model.

The most useful model to compute the time dependent 
moduli among these models is a Generalized Standard 
Linear Solid (GSLS) model for which the general stress-
strain relation can be written as: 

 
 

 

 a0σ(t) + � ai

L

i=1

∂iσ(t)
∂ti = b0ε(t) + �bi

L

i=1

∂iε(t)
∂ti  (1) 

 
  

	

(1)

Where, ai, bi are constants for a linear material. The 
complex modulus (M*) for a general viscoelastic material 
can be calculated by applying the sinusoidal varying 

Figure 1.  Characteristic functions for an ideal viscoelastic material. 

Figure 2. The Zener model with three elements (wiki).
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oscillating stress of given frequency, e.g., σ(ω)=σ0 exp(iωt). 
After certain amount of time the initial effect is negligible 
and the strain will also be in the form of e(ω)=e0 exp(iωt). 
The complex modulus of the material is given by Bland 
(1960); Christensen (2012).

 
 

 

 

 M(ω) =
σ0(ω)
ε0(ω)

=
a0 + ∑ ai

L
=1 ωi

b0 + ∑ bi
L
i=1 ωi (2) 

 
  

	

(2)

Thus, the better approach to model time dependent moduli 
is to assemble many Zener models in parallel, which gives 
us a “Generalized Zener model” (Figure 3).

Viscoelastic wave formulation

There are many formulations available in literature to 
define the above mentioned viscoelastic materials in time 
domain. In this paper, we only discuss the memory variable 
approach which  is based upon a SLS model (Carcione et 
al., 1988; Liu et al., 1976). As we know that the stress (sij) 
strain (ϵkl) relationship for a viscoelastic medium can be 
written in the form of convolution integral as

 
 

 
 σij = Λ̇ (t) ⋆ εij (t)δij + Ṁ ⋆ εij  (3) 

 
 
 
  

	 (3)

Where Λ and M are the relaxation functions.  A general 
relaxation function (Ψ) can be modeled with the help of SLS 
model comprised of L relaxation mechanisms (Carcione, 
2007).

 
 

 

 

 ψ(t) = MR �1 −
1
L
��1 −

τεl

τσl
exp �−

t
τσl
��

L

l=1

�H(t − t′) (4) 

 
  

	
(4)

MR is the relaxed modulus, H(t) is the heavy side function, 
tl

s and tl
e stress and strain relaxation times, respectively. The 

stress-strain and memory variable equations can be obtained 
by substituting the relaxation function (Eq. 4) into Eq. 3. 
Further, separate relaxation functions should be considered for 
the P-wave and S-wave. Thus, it will yield following relations:

 
 

 

 
∂σij

∂t
= Λ ε̇k,k δij + 2M ε̇i,j −

1
L
� rij

l
L

l=1
 (5) 

 
∂rij

l

∂t
= −

1
τσl

rij
l +

1
τσl
Λl ε̇k,k δij +

1
τσl

Ml(ε̇i,j + ε̇j,i) (6) 

 
  

	

(5) 

 
 

 

 
∂σij

∂t
= Λ ε̇k,k δij + 2M ε̇i,j −

1
L
� rij

l
L

l=1
 (5) 

 
∂rij

l

∂t
= −

1
τσl

rij
l +

1
τσl
Λl ε̇k,k δij +

1
τσl

Ml(ε̇i,j + ε̇j,i) (6) 

 
  

	

(6)

Where, we have Λ=Π–2M; Λl =Πl–2Ml, and ΛR =ΠR–2MR. 
To simplify the equations we have assumed that, Π=ΠR (1-
∑L

(l=1) Tp
l); M=MR (1-∑L

(l=1) Ts
l); Πl=ΠR Tp

l; and  Ml=MR 
Ts

l. Here ΠR and 2MR are relaxed modulus for respective 
waves functions, rl

ij, is known as the memory variable, 
and Tp

l and Ts
l stands for 

 
 

 

1
L
�1 − τεpl

τσl
� and 1

L
�1 − τεsl

τσl
� 

  

, respectively. 
Eq. (5) and (6), along with the continuity equation, 

forms a complete set of equation for viscoelastic modelling. 
Thus the complete set of wave equation for 2D viscoelastic 
wave can be written in expanded form as follows. 

 
 

 ρ
∂vx

∂t
 =

∂σxx

∂x
+
∂σxz

∂z
+ ρfx  (7) 

 ρ
∂vz

∂t
 =

∂σzx

∂x
+
∂σzz

∂z
+ ρfz  (8) 

 
∂σxx

∂t
= (Λ + 2M) ε̇x,x + Λ ε̇z,z −

1
L
� rxx

l
L

l=1

 (9) 

 
∂σzz

∂t
= Λ ε̇x,x + Λ ε̇y,y + (Λ + 2M) ε̇z,z −

1
L
� rzz

l
L

l=1

 (10) 

 
∂σxz

∂t
= M ε̇x,z + M ε̇z,x −

1
L
� rxz

l
L

l=1

 (11) 

 
∂rxx

l

∂t
= −

1
τσl

rxx
l +

1
τσl

(Λl + 2Ml) ε̇x,x +
1
τσl
Λl ε̇z,z (12) 

 
∂rzz

l

∂t
= −

1
τσl

rxx
l +

1
τσl
Λl ε̇x,x +

1
τσl

(Λl + 2Ml) ε̇z,z  (13) 

 
∂rxz

l

∂t
= −

1
τσl

rxz
l +

1
τσl

M(ε̇x,z + ε̇z,x) (14) 

 
The relaxation times can be determined by minimizing 

the error between Q(w) and given Q0 (Blanch et al., 1995):

 
 

 

\ 

 ϕ = � �Q−1�ω, τσl , τεl � − Q0
−1(ω)�

2
 dω

ω2

ω1

 (15) 

 
  

	
(15)

where, 

 
 

Q(ω) = Re [Mc (ω)]
Im [Mc (ω)] ;  MC(ω) =ℱ { ∂t[ψ(t)] }  and τ σ

l = 1
ωl

 

 
  

 is 
the stress relaxation time. 

These equations can be solved using the finite 
difference method. Here we use a synthetic data set to 
demonstrate the importance of the method. 

Figure 3.  Standard Linear Solid model with Zener elements.
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Measurement of attenuation 

In general attenuation measurements are carried out using 
the amplitude information from the seismic data. Thus, 
in this paper we only discuss the amplitude based spectral 
ratio technique, for Q estimation. The data used in this 
study was generated by designing a synthetic Vertical 
Seismic Profiling (VSP) survey. The VSP geometry used 
is shown in Figure 4, where we have laid the receivers 
vertically and placed the source at the top for the seismic 
wave simulation. 

Spectral ratio technique

This method is very common among the geophysicists 
and has many variants. The fundamental principle of this 
method is to compare the spectral characteristics of the 
seismogram while assuming that the amplitude of a wave 
can be described by the following relationship: 

 
 

 

 

 𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔) = 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡)𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)𝐴𝐴𝐴𝐴0(𝜔𝜔𝜔𝜔) exp �−
𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡
2𝑄𝑄𝑄𝑄

� (16) 

 
  

	
(16)

where, A0 is the initial amplitude of the wave which has 
reduced to A after travelling for time t in the given medium 
of attenuation characterized by Q. G and R represent the 
reduction in amplitude due to geometric spreading and 
reflectivity, respectively.  Assuming two receivers placed 
some distance apart records the amplitude A1(w) and A2(w)  
respectively at time t1 and t2 respectively. We obtain 

	

 
 

 

 ln �
𝐴𝐴𝐴𝐴2(𝜔𝜔𝜔𝜔)

𝐴𝐴𝐴𝐴1(𝜔𝜔𝜔𝜔)� =  −
𝜔𝜔𝜔𝜔Δ𝑡𝑡𝑡𝑡
2𝑄𝑄𝑄𝑄

 (17) 

 
  

	

(17)

Where, Dt=t2-t1. When we plot the logarithm of amplitude 
ratio with the frequency, it represents the equation of 
straight line with a slope as equal to 

 
 

 

Δt 𝜋𝜋𝜋𝜋
𝑄𝑄𝑄𝑄

 , which can be 
in turn utilized to estimate the attenuation Q. 

First order effect of attenuations

When a medium offers attenuation to seismic waves, certain 
phenomena come into play which can be understood as 
the first order effect of attenuation. Here, we describe the 
most important ones and their mitigation. 
1.	 Frequency dependence of Q: The attenuation 

experienced by a seismic wave is dependent on the 
frequency and attenuation mechanism. In a seismic 
modelling experiment, it’s advised to assume constant 
attenuation over the seismic frequency range (McDonal 
et al., 1958).  

2.	 Frequency dependence of the reflectivity: Attenuation 
causes the reflectivity of the interfaces to become 
frequency dependent and thus can affect the attenuation 
estimation. Hence one must constrain the experiments 
to include only/nearly normal incident rays. It can be 
achieved using VSP geometry.  

3.	 Velocity dispersion causing the travel time difference 
(drift): As mentioned earlier, attenuation causes 
different frequencies to be attenuated differently. The 
higher frequencies attenuate faster in comparison to 
lower frequencies. This causes changes in seismic 
wavelet and it gets broader with depth. It also causes 
shifting of the peak amplitude and thus the events 
experiences a drift. This effect can be corrected or 
compensated by providing the appropriate time shift 
or by matching with well log.  

Figure 4. Arrangement of source (in red asterisk) and receiver (blue triangles) along with absorbing boundaries (along edges) as 
used in simulation. 
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Numerical Simulation of Seismic Wave 
Propagation in Viscoelastic media

Following the above mention concepts, we carried out 
a synthetic VSP modelling for the elastic as well as 
viscoelastic medium. The outputs of these simulations are 
compared in Figure 5. Some of the important parameters 
for the model and for the simulation are shown in the 
Table 1, along with their corresponding values. It can be 
seen that the receivers are arranged vertically as in VSP 

geometry (Figure 4). The simulation parameters, i.e. time 
step (dt) was taken according to stability condition and to 
minimize the grid dispersion, more than 6 grids/wavelength 
were used. To suppress the edge reflections, damping type 
absorbing boundaries (Cerjan et al., 1985) were applied on 
all the sides. The synthetic VSP seismogram generated by 
using viscoelastic formulation, considering attenuation in 
the media, is used for Q estimation. The results generated 
after taking care of all the above mentioned effects are 
shown in Figure 5. 

Figure 5. A zoomed section of the VSP gather generated using elastic wave formulation (in red color) and viscoelastic formulations 
(in blue color).  

Table 1. List of parameters used in seismic simulation carried out for a viscoelastic media. 

Parameter Value

Model physical parameters

Velocity, Vp 
Velocity, Vs       
Density, r 
Quality factor, Q

2000 ms-1 
1700 ms-1 

1900 kgm-3 

70

Source Parmeters

Source signature
Central frequency, f0  
Zero time offset/shift, f0
Total time length, T

Ricker
15Hz
0.07sec
1sec

Simulation  parameters

Model size (x,z) 
Grid spacing, Dh 
Time step, Dt 
Absorbing boundary nodes  

3km x 3km
5m
0.1msec
40
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We have also used a two layered model and generated 
a VSP record for this model. Source and simulation 
parameters were same as for homogeneous. We have 
chosen two nearby locations to picked events (down going 
and upcoming) and computed the attenuation for down 
going as well as upcoming wave. Figure 6 demonstrates 
the key steps involved in attenuation measurement using 
the Spectral Ratio method for a two layer case. The steps 
are namely- selection of traces, clipping the waveform part, 
Fourier Transform of the clipped part, and estimation of 
attenuation using the slope of linear fit. For the seismic 
wave simulation, we have used the ‘FDwave’ package 
developed by Malkoti et al. (2018a, 2018b). 

RESULTS 

The Figure 5 shows a very simple experiment using 
homogeneous model to demonstrate the difference between 
the elastic and viscoelastic seismogram. The difference due 
to the first order effects is very prominent for late phases. 
This type of mismatch, if not taken care of, can lead to the 
erroneous results. In Figure 6, we have shown a successful 
application of this method for Q estimation. As we can 
see in this figure that considering the first order effects of 

attenuation and following the prescribed solutions, we can 
estimate the value of attenuation quite precisely.

CONCLUSIONS

In this paper we have discussed the behavior of an 
attenuating media and how to model it, using the 
theory of viscoelasticity, we have shown that the seismic 
attenuation has a large effect on synthetic seismogram, 
which was generated for a synthetic VSP survey.  Further, 
we demonstrate an application of Spectral ratio technique 
to estimate precise value of Q using the synthetic 
seismic data. We have also discussed the first order 
effects of attenuation, which should be considered while 
incorporating seismic attenuation in the seismic modelling 
experiment. Further, details on the theory and seismic 
wave simulation algorithm being used are available in 
Carcione et al. (1988) and Malkoti et al. (2018a, 2018b) 
respectively. 

Compliance with Ethical Standards

The authors declare that they have no conflict of interest 
and adhere to copyright norms

Figure 6. An example of attenuation estimation using spectral ratio. The complete traces selected for the estimation, (a) The 
clipped part used for the estimation at two places, (b) Fourier spectrum of the given clipped traces, (c) The least square fitting for 
the determination of slope to estimate Q, (d) Here ‘Trace 1 refers’ to elastic VSP trace and Trace 2 refers to viscoelastic VSP trace.
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